精英家教网 > 高中数学 > 题目详情
已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.过坐标原点O作一条射线与椭圆、双曲线分别交于M,N两点,直线MA,MB,NA,NB的斜率分别记为k1,k2,k3,k4,则下列关系正确的是(  )
A.k1+k2=k3+k4B.k1+k3=k2+k4
C.k1+k2=-(k3+k4D.k1+k3=-(k2+k4
相关习题

科目:高中数学 来源: 题型:

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.P是双曲线上的动点,M是椭圆上的动点(P、M都异于A、B),且满足
AP
+
BP
=λ(
AM
+
BM
)
,其中λ∈R,设直线AP、BP、AM、BM的斜率分别记为k1,k2,k3,k4,k1+k2=5,则k3+k4=
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.过坐标原点O作一条射线与椭圆、双曲线分别交于M,N两点,直线MA,MB,NA,NB的斜率分别记为k1,k2,k3,k4,则下列关系正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.过坐标原点O作一条射线与椭圆、双曲线分别交于M,N两点,直线MA,MB,NA,NB的斜率分别记为k1,k2,k3,k4,则下列关系正确的是(  )
A.k1+k2=k3+k4B.k1+k3=k2+k4
C.k1+k2=-(k3+k4D.k1+k3=-(k2+k4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.P是双曲线上的动点,M是椭圆上的动点(P、M都异于A、B),且满足
AP
+
BP
=λ(
AM
+
BM
)
,其中λ∈R,设直线AP、BP、AM、BM的斜率分别记为k1,k2,k3,k4,k1+k2=5,则k3+k4=______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>0,椭圆
x2
a2
+
y2
b2
=1
,双曲线
x2
a2
-
y2
b2
=1
和抛物线ax2+by=0的离心率分别为e1,e2和e3,则下列关系不正确的是(  )
A、e12+e22<2e32
B、e1e2<e3
C、e1e2>e3
D、e22-e12>2e32

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a>b>0,椭圆
x2
a2
+
y2
b2
=1
,双曲线
x2
a2
-
y2
b2
=1
和抛物线ax2+by=0的离心率分别为e1,e2和e3,则下列关系不正确的是(  )
A.e12+e22<2e32B.e1e2<e3
C.e1e2>e3D.e22-e12>2e32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)与双曲线
x2
m2
-
y2
n2
=1
(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是(  )
A、
3
3
B、
2
2
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
和椭圆
x2
16
+
y2
9
=1
有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)和双曲线
x2
m2
-
y2
n2
=1
(m>0,n>0)有公共的焦点F1,F2,P是两曲线的一个交点.求证:
(1)|PF1|•|PF2|=a2-m2
(2)S△F1PF2=bn
(3)tan
F1PF2
2
=
n
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
和椭圆
x2
m2
+
y2
b2
=1(a>0,m>b>0)
的离心率之积大于1,那么以a,b,m为边的三角形是(  )

查看答案和解析>>


同步练习册答案