精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为(  )
A.y2=4xB.y2=-4xC.x2=4yD.y2=8x
相关习题

科目:高中数学 来源:东莞一模 题型:单选题

已知抛物线C的顶点为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为(  )
A.y2=4xB.y2=-4xC.x2=4yD.y2=8x

查看答案和解析>>

科目:高中数学 来源:2012年广东省东莞市高考数学一模试卷(文科)(解析版) 题型:选择题

已知抛物线C的顶点为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为( )
A.y2=4
B.y2=-4
C.x2=4y
D.y2=8

查看答案和解析>>

科目:高中数学 来源:广东省模拟题 题型:单选题

已知抛物线C的顶点为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为
[     ]
A.        
B.      
C.        
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(2,0).
(1)求抛物线C的方程;
(2)过N(-1,0)的直线l交曲C于A,B两点,又AB的中垂线交y轴于点D(0,t),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为(0,1),点P(0,m)(m≠0).
(1)求抛物线的方程;
(2)设过点P且斜率为1的直线交抛物线C于A、B两点,点P关于原点的对称点Q,若m<0,求使得△QAB面积最大的m的值;
(3)设过P点的直线交抛物线C于M、N两点,是否存在这样的点P,使得
1
|PM|
+
1
|PN|
为定值?若存在,求点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为6.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C与直线y=kx-2相交于不同的两点A、B,且AB中点横坐标为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点在y轴上,且经过点(-1,4),则抛物线的准线方程为
y=-
1
16
y=-
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(
1
2
,0)
.(1)求抛物线C的方程; (2)已知直线y=k(x+
1
2
)
与抛物线C交于A、B 两点,且|FA|=2|FB|,求k 的值; (3)设点P 是抛物线C上的动点,点R、N 在y 轴上,圆(x-1)2+y2=1 内切于△PRN,求△PRN 的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(1,0),且过点A(t,2).
(1)求t的值;
(2)若直线y=kx-1与抛物线C只有一个公共点,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点坐标为F(2,0),点P的坐标为(m,0)(m≠0),设过点P的直线l交抛物线C于A,B两点,点P关于原点的对称点为点Q.
(1)当直线l的斜率为1时,求△QAB的面积关于m的函数表达式.
(2)试问在x轴上是否存在一定点T,使得TA,TB与x轴所成的锐角相等?若存在,求出定点T 的坐标,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案