精英家教网 > 高中数学 > 题目详情
设定点F1(-5,0)、F2(5,0),动点P(x,y)满足条件,|PF1|+|PF2|=10.则动点P的轨迹是(  )
A.椭圆B.线段C.不存在D.以上都不对
相关习题

科目:高中数学 来源: 题型:

3、设定点F1(-5,0)、F2(5,0),动点P(x,y)满足条件,|PF1|+|PF2|=10.则动点P的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定点F1(-5,0)、F2(5,0),动点P(x,y)满足条件,|PF1|+|PF2|=10.则动点P的轨迹是(  )
A.椭圆B.线段C.不存在D.以上都不对

查看答案和解析>>

科目:高中数学 来源:2009-2010学年海南省琼海市嘉积中学高二(上)期末数学试卷(理科)(解析版) 题型:选择题

设定点F1(-5,0)、F2(5,0),动点P(x,y)满足条件,|PF1|+|PF2|=10.则动点P的轨迹是( )
A.椭圆
B.线段
C.不存在
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设定点F1(-5,0)、F2(5,0),动点P(x,y)满足条件,|PF1|+|PF2|=10.则动点P的轨迹是


  1. A.
    椭圆
  2. B.
    线段
  3. C.
    不存在
  4. D.
    以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)设平面内两定点F1(-
5
,0),F2
5
,0),直线PF1和PF2相交于点P,且它们的斜率之积为定值-
4
5

(Ⅰ)求动点P的轨迹C1的方程;
(Ⅱ)设M(0,
1
5
),N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P、Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1
(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以双曲线C2的另一焦点F1为圆心的圆M与直线y=
3
x
相切,圆N:(x-2)2+y2=1.过点P(1,
3
)作互相垂直且分别与圆M、圆N相交的直线l1和l2,设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,问:
s
t
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内两定点F1(0,-
5
)、F2(0,
5
)
,动点P满足条件:|
PF1
|-|
PF2
|=4
,设点P的轨迹是曲线E,O为坐标原点.
(I)求曲线E的方程;
(II)若直线y=k(x+1)与曲线E相交于两不同点Q、R,求
OQ
OR
的取值范围;
(III)(文科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,记xA、xB分别为A、B两点的横坐标,求|xA•xB|的最小值.
(理科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内两定点F1(0,-
5
)、F2(0,
5
)
,动点P满足条件:|
PF1
|-|
PF2
|=4
,设点P的轨迹是曲线E,O为坐标原点.
(I)求曲线E的方程;
(II)若直线y=k(x+1)与曲线E相交于两不同点Q、R,求
OQ
OR
的取值范围;
(III)(文科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,记xA、xB分别为A、B两点的横坐标,求|xA•xB|的最小值.
(理科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,P是椭圆上一点,且∠F1PF2=60°,设
|PF1|
|PF2|

(1)求椭圆C的离心率e和λ的函数关系式e=f(λ)
(2)若椭圆C的离心率e最小,且椭圆C上的动点M到定点N(0,
1
2
)
的最远距离为
5
,求椭圆C的方程.

查看答案和解析>>


同步练习册答案