精英家教网 > 初中数学 > 题目详情
若(x+2)2+|y-3|=0,则代数式xy的值是(  )
A.-8B.8C.-9D.9
相关习题

科目:初中数学 来源: 题型:

若(x+2)2+|y-3|=0,则代数式xy的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

若代数式3ax+7b4与代数式-a4b2y是同类项,则xy的值是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若(x+2)2+|y-3|=0,则代数式xy的值是(  )
A.-8B.8C.-9D.9

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若代数式3ax+7b4与代数式-a4b2y是同类项,则xy的值是(  )
A.9B.-9C.4D.-4

查看答案和解析>>

科目:初中数学 来源:福建省期末题 题型:单选题

若(x+2)2+|y﹣3|=0,则代数式xy的值是
[     ]
A.﹣8
B.8
C.﹣9
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m+n)(m+n)=2m2+3mn+n2
(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平方为四块小长方形,然后再拼成一个正方形,请你观察图形,写出三个代数式(m+n)2、(m-n)2、mn关系的等式:______.
(2)若已知x+y=7、xy=10,则(x-y)2=______
(3)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞.则(a+2b)2-8ab的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)设(x-3)2+|y+1|=0,求代数式x+y的值;
(2)设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于本身的有理数,则a+b+c+d=?
(3)已知A=4x2-4xy+y2,B=x2+xy-5y2,求A-B;
(4)(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2;
(5)多项式(a-2)x+(2b+1)xy+y3-7是关于x,y的多项式,若该多项式不含二次项和一次项,求3a+2b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m+n)(m+n)=2m2+3mn+n2
(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平方为四块小长方形,然后再拼成一个正方形,请你观察图形,写出三个代数式(m+n)2、(m-n)2、mn关系的等式:
(m+n)2=(m-n)2+4mn
(m+n)2=(m-n)2+4mn

(2)若已知x+y=7、xy=10,则(x-y)2=
9
9

(3)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞.则(a+2b)2-8ab的值为
4cm2
4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+数学公式=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+数学公式=0.②
将①代入②,整理得4c2+2c-2ab+数学公式=0.∴ab=2c2+c+数学公式
由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+数学公式=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+数学公式≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+数学公式=0.∴t1=t2=数学公式,即a=b=数学公式.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=数学公式+t,b=数学公式-t.①
∵a2+b2+6c+数学公式=0,∴(a+b)2-2ab+6c+数学公式=0.②
将①代入②,得(1-2c)2-2数学公式+6c+数学公式=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=数学公式,b=数学公式.a=b=数学公式,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=数学公式+t,y=数学公式-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>


同步练习册答案