精英家教网 > 初中数学 > 题目详情
已知点M(3,-2),它与点N(x,y)在同一条平行于x轴的直线上,且MN=4,那么点N的坐标是(  )
A.(7,-2)或(-1,-2)B.(3,2)或(3,-6)
C.(7,2)或(-1,-6)D.(4,-2)或(-4,-2)
相关习题

科目:初中数学 来源: 题型:

已知函数y=k1x与函数y=
k2
x
满足k1•k2>0,则在同一坐标系中,它们的图象(  )
A、只有一个交点B、有两个交点
C、没有交点D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y=
k
x
与一次函数y=mx+b图象交于P(-2,1)和Q(1,n)两点.
(1)求这两个函数的关系式;
(2)在同一直角坐标系内画出它们的图象;
(3)求△POQ的面积;
(4)直接写出不等式
k
x
-mx-b≥0
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=5x2+(m-1)x+m与x轴的两个交点在y轴同侧,它们的距离平方等于
49
25
,则m的值为(  )
A、-2B、12C、24D、48

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知:如图,观察图形回答下面问题:
(1)此图形的名称为
圆锥

(2)请你与同伴一起做一个这样的物体,并把它沿AS处剪开,铺在桌面上,研究一下它的侧面展开是一个
形.
(3)如果点C是SA的中点,在C处有蜗牛想吃到的食品,恰好在A处有一只蜗牛,但它又不能直接爬到C处,只能沿圆锥曲面爬行,你能画出蜗牛爬行的最短路程的图形吗?
(4)圆锥的母线长为10cm,侧面展开图的夹角为90°,请你求出蜗牛爬行的最短路程的平方.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=x2-2x+6-m与直线y=-2x+6+m,它们的一个交点的纵坐标是4.
(1)求抛物线和直线的解析式;
(2)如图,直线y=kx(k>0)与(1)中的抛物线交于两个不同的点A、B,与(1)中的直线交于点P,试证明:
OP
PA
+
OP
OB
=2;
(3)在(2)中能否适当选取k值,使A、B两点的纵坐标之和等于8?如果能,求出此时的k值;如果不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y1=
kx
的图象与一次函数y2=kx+m的图象相交于A(2,1).
(1)分别求出这两个函数的解析式,并在同一坐标系内画出它们的大致图象;
(2)试判断P(-1,5)关于x轴的对称点Q是否在一次函数y2=kx+m的图象上,若在请求出S△APQ;若不在,请求出直线AQ的解析式;
(3)若一次函数的图象与反比例函数的图象的另一个交点为B,且B点的纵坐标为-4,请根据图象回答:①当x取何值时,y1>y2;②当x取何值时,y1•y2>0.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
与一次函数图象交于P(-2,1)和Q(1,n)两点.
(1)求这两个函数的关系式;
(2)在同一直角坐标系内画出它们的图象;
(3)求△POQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC与△ADE均为等边三角形,点A、E在BC的同侧.
(1)如图1,点D在BC上,写出线段AC、CD、CE之间的数量关系,并证明;
(2)如图2,若点D在BC的延长线上,其它条件不变,直接写出AC、CD、CE之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=kx+b与反比例函数y=数学公式的图象交于A(-2,1)、B(n,-2)两点.
(1)求此反比例函数和一次函数的解析式,并在同一坐标系中作出它们的图象;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=数学公式x2+px+q与x轴相交于不同的两点A(x1,0)、B(x2,0)(B在A的右边),又抛物线与y轴相交于C点,且满足数学公式
(1)求证:4p+5q=0;
(2)问是否存在一个圆O',使它经过A、B两点,且与y轴相切于C点?若存在,试确定此时抛物线的解析式及圆心O'的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案