精英家教网 > 初中数学 > 题目详情
已知x=-
1
2
是方程2x-1=a+1的解,则a的值为(  )
A.-1B.-2C.-3D.-4
相关习题

科目:初中数学 来源: 题型:

(1)已知:A=x2-2x-1,B=3x2-x+1,C=-x2-x+1,先化简:(B-3A)-[B-
1
2
(2C+4B)]
,再求当x=-
1
7
时的此式的值.
(2)列方程解应用题:某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,则学生队伍的长是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)已知:A=x2-2x-1,B=3x2-x+1,C=-x2-x+1,先化简:(B-3A)-数学公式,再求当x=数学公式时的此式的值.
(2)列方程解应用题:某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,则学生队伍的长是多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读并
①方程x2-2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=
1+
17
4
,x2=
1-
17
4
,则有x1+x2=
1
2
,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-
7
3
,x2=1,则有x1+x2=-
4
3
,x1x2=-
7
3

(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2-2=0有实数根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读并解答:
①方程x2-2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=
1+
17
4
,x2=
1-
17
4
,则有x1+x2=
1
2
,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-
7
3
,x2=1,则有x1+x2=-
4
3
,x1x2=-
7
3

(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2-2=0有实数根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x=-
1
2
是方程2x-1=a+1的解,则a的值为(  )
A、-1B、-2C、-3D、-4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知x=-
1
2
是方程2x-1=a+1的解,则a的值为(  )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则:2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=
1
2
m=
1
2
,∴m=
1
2

解法二:设2x3-x2+m=A•(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取x=-
1
2

(-
1
2
)3-(-
1
2
)2+m
=0,故 m=
1
2

(2)已知x4+mx3+nx-16有因式(x-1)和(x-2),求m、n的值.

查看答案和解析>>


同步练习册答案