精英家教网 > 高中数学 > 题目详情
有如下命题:
①若0<a<1,对?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞);
④?x∈R,tanx=2011,
其中真命题的个数为(  )
A.1B.2C.3D.4
相关习题

科目:高中数学 来源: 题型:

有如下命题:
①若0<a<1,对?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞);
④?x∈R,tanx=2011,
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下命题:
①若0<a<1,对?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞)
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有如下命题:
①若0<a<1,对?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞);
④?x∈R,tanx=2011,
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省安庆市高一(上)期末数学试卷C(解析版) 题型:选择题

有如下命题:
①若0<a<1,对?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞);
④?x∈R,tanx=2011,
其中真命题的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省枣庄市高三(上)期中数学试卷(理科)(解析版) 题型:选择题

有如下命题:
①若0<a<1,对?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞);
④?x∈R,tanx=2011,
其中真命题的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省枣庄市高三(上)期中数学试卷(文科)(解析版) 题型:选择题

有如下命题:
①若0<a<1,对?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞)
其中真命题的个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

有如下命题:①若0<a<1,对?x<0,则ax>1;②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞);④?x∈R,tanx=2011,其中真命题的个数为


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下命题:
①若0<a<1,对任意x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞),
④函数y=2x与y=log2x互为反函数,
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有如下命题:
①若0<a<1,对任意x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞),
④函数y=2x与y=log2x互为反函数,
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省安庆市高一(上)期末数学试卷B(解析版) 题型:选择题

有如下命题:
①若0<a<1,对任意x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞),
④函数y=2x与y=log2x互为反函数,
其中正确命题的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>


同步练习册答案