精英家教网 > 高中数学 > 题目详情
设斜率为1的直线l与椭圆C:
x2
4
+
y2
2
=1相交于不同的两点A、B,则使|AB|为整数的直线l共有(  )
A.4条B.5条C.6条D.7条
相关习题

科目:高中数学 来源: 题型:

设斜率为1的直线l与椭圆C:
x2
4
+
y2
2
=1相交于不同的两点A、B,则使|AB|为整数的直线l共有(  )
A、4条B、5条C、6条D、7条

查看答案和解析>>

科目:高中数学 来源:西城区二模 题型:单选题

设斜率为1的直线l与椭圆C:
x2
4
+
y2
2
=1相交于不同的两点A、B,则使|AB|为整数的直线l共有(  )
A.4条B.5条C.6条D.7条

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率为k(k≠0)的直线l交椭圆C:
x2
4
+y2=1
于M(x1,y1),N(x2,y2)两点.
(1)记直线OM,ON的斜率分别为k1,k2,当3(k1+k2)=8k时,证明:直线l过定点;
(2)若直线l过点D(1,0),设△OMD与△OND的面积比为t,当k2
5
12
时,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
4
+
y2
3
=1
,直线l:y=
x
2
+m
与椭圆C交于A、B两点,点P(1,
3
2
)

(1)求弦AB中点M的轨迹方程;
(2)设直线PA、PB斜率分别为k1、k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C方程为
x2
4
+
y2
3
=1
,直线l:y=
x
2
+m
与椭圆C交于A、B两点,点P(1,
3
2
)

(1)求弦AB中点M的轨迹方程;
(2)设直线PA、PB斜率分别为k1、k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,如图,已知椭圆C:
x24
+y2
=1的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、BP与直线l:y=-2分别交于点M、N;
(I)设直线AP、BP的斜率分别为k1,k2求证:k1•k2为定值;
(Ⅱ)求线段MN长的最小值;
(Ⅲ)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图1,已知定点F1(-2,0)、F2(2,0),动点N满足|
ON
|=1(O为坐标原点),
F1M
=2
NM
MP
MF2
(λ∈R),
F1M
PN
=0,求点P的轨迹方程.
精英家教网
(2)如图2,已知椭圆C:
x2
4
+y2=1的上、下顶点分别为A、B,点P在椭圆上,且异于点A、B,直线AP、BP与直线l:y=-2分别交于点M、N,
(ⅰ)设直线AP、BP的斜率分别为k1、k2,求证:k1•k2为定值;
(ⅱ)当点P运动时,以MN为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>


同步练习册答案