精英家教网 > 高中数学 > 题目详情
设F1、F2为双曲线
x2
sin2θ
-
y2
b2
=1(0<θ≤
π
2
,b>0)的两个焦点,过F1的直线交双曲线的同支于A、B两点,如果|AB|=m,则△AF2B的周长的最大值是(  )
A.4-mB.4C.4+mD.4+2m
相关习题

科目:高中数学 来源: 题型:

设F1、F2为双曲线
x2
sin2θ
-
y2
b2
=1(0<θ≤
π
2
,b>0)的两个焦点,过F1的直线交双曲线的同支于A、B两点,如果|AB|=m,则△AF2B的周长的最大值是(  )
A、4-mB、4
C、4+mD、4+2m

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2为双曲线
x2
sin2θ
-
y2
b2
=1(0<θ≤
π
2
,b>0)的两个焦点,过F1的直线交双曲线的同支于A、B两点,如果|AB|=m,则△AF2B的周长的最大值是(  )
A.4-mB.4C.4+mD.4+2m

查看答案和解析>>


同步练习册答案