精英家教网 > 高中数学 > 题目详情
设f(x)定义域为R,对任意的x都有f(x)=f(2-x),且当x≥1时,f(x)=2x-1,则有(  )
A.f(
1
3
)<f(
3
2
)<f(
2
3
B.f(
2
3
)<f(
3
2
)<f(
1
3
C.f(
2
3
)<f(
1
3
)<f(
3
2
D.f(
3
2
)<f(
2
3
)<f(
1
3
相关习题

科目:高中数学 来源: 题型:

设f(x)定义域为R,对任意的x都有f(x)=f(2-x),且当x≥1时,f(x)=2x-1,则有(  )
A、f(
1
3
)<f(
3
2
)<f(
2
3
B、f(
2
3
)<f(
3
2
)<f(
1
3
C、f(
2
3
)<f(
1
3
)<f(
3
2
D、f(
3
2
)<f(
2
3
)<f(
1
3

查看答案和解析>>

科目:高中数学 来源:江苏 题型:单选题

设f(x)定义域为R,对任意的x都有f(x)=f(2-x),且当x≥1时,f(x)=2x-1,则有(  )
A.f(
1
3
)<f(
3
2
)<f(
2
3
B.f(
2
3
)<f(
3
2
)<f(
1
3
C.f(
2
3
)<f(
1
3
)<f(
3
2
D.f(
3
2
)<f(
2
3
)<f(
1
3

查看答案和解析>>

科目:高中数学 来源:2010年福建师大附中高考数学模拟试卷(文科)(解析版) 题型:选择题

设f(x)定义域为R,对任意的x都有f(x)=f(2-x),且当x≥1时,f(x)=2x-1,则有( )
A.f()<f()<f(
B.f()<f()<f(
C.f()<f()<f(
D.f()<f()<f(

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮复习巩固与练习:指数函数(解析版) 题型:选择题

设f(x)定义域为R,对任意的x都有f(x)=f(2-x),且当x≥1时,f(x)=2x-1,则有( )
A.f()<f()<f(
B.f()<f()<f(
C.f()<f()<f(
D.f()<f()<f(

查看答案和解析>>

科目:高中数学 来源:2007年江苏省高考数学试卷(解析版) 题型:选择题

设f(x)定义域为R,对任意的x都有f(x)=f(2-x),且当x≥1时,f(x)=2x-1,则有( )
A.f()<f()<f(
B.f()<f()<f(
C.f()<f()<f(
D.f()<f()<f(

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x)定义域为R,对任意的x都有f(x)=f(2-x),且当x≥1时,f(x)=2x-1,则有


  1. A.
    f(数学公式)<f(数学公式)<f(数学公式
  2. B.
    f(数学公式)<f(数学公式)<f(数学公式
  3. C.
    f(数学公式)<f(数学公式)<f(数学公式
  4. D.
    f(数学公式)<f(数学公式)<f(数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,有f(x+y)=f(x)•f(y).
(1)证明:f(0)=1;          
(2)证明:f(x)在R上是增函数;
(3)设集合A={(x,y)|f(x2)•f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=φ,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,有f(x+y)=f(x)•f(y).
(1)证明:f(0)=1;     
(2)证明:f(x)在R上是增函数;
(3)设集合A={(x,y)|f(x2)•f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=φ,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,有f(x+y)=f(x)•f(y).
(1)证明:f(0)=1;
(2)证明:f(x)在R上是增函数;
(3)设集合A={(x,y)|f(x2)•f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=φ,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)定义域为R,当x<0时,f(x)>1,且对于任意的x,y∈R,有f(x+y)=f(x)•f(y)成立.数列{an}满足a1=f(0),且 f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ) 求f(0)的值;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 是否存在正数k,使(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥k
2n+1
对一切n∈N*均成立,若存在,求出k的最大值,并证明,否则说明理由.

查看答案和解析>>


同步练习册答案