精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是(  )
A.(1,
3
2
]
B.(1,
3
2
C.(2,
5
2
]
D.(,2]
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是(  )
A、(1,
3
2
]
B、(1,
3
2
C、(2,
5
2
]
D、(,2]

查看答案和解析>>

科目:高中数学 来源:河南模拟 题型:单选题

已知双曲线
x2
a2
-
y2
b2
=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是(  )
A.(1,
3
2
]
B.(1,
3
2
C.(2,
5
2
]
D.(,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的左焦点为F1,左、右顶点为A1、A2,P为双曲线右支上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
,两焦点为F1,F2,过F2作x轴的垂线交双曲线与A,B两点,且△ABF1内切原的半径为a,则此双曲线的离心率为(  )
A、
2
B、
2
+1
C、
1+
5
2
D、
2
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的两个焦点分别为F1、F2,双曲线与坐标轴的两个交点分别为A、B,若|F1F2|=
5
3
|AB|
,则双曲线的离心率e=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
a2
-
y2
b2
=1
的两个焦点分别为F1、F2,双曲线与坐标轴的两个交点分别为A、B,若|F1F2|=
5
3
|AB|
,则双曲线的离心率e=(  )
A.
5
3
B.
5
4
C.
4
3
D.
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知双曲线
x2
a2
-
y2
b2
=1
的左焦点为F1,左、右顶点为A1、A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为(  )
A、相交B、相切
C、相离D、以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的焦点为F1(-c,0)、F2(c,0)(c>0),焦点F2到渐近线的距离为
3
,两条准线之间的距离为1.
(1)求此双曲线的方程;
(2)若直线y=x+2与双曲线分别相交于A、B两点,求线段AB的长;
(3)过双曲线焦点F2且与(2)中AB平行的直线与双曲线分别相交于C、D两点,若
AB
+
AD
=
AC
,求
1
2
(
OA
OD
)tan<
OA
OD
的值.

查看答案和解析>>

科目:高中数学 来源:成都模拟 题型:单选题

(理)已知双曲线
x2
a2
-
y2
b2
=1
的左焦点为F1,左、右顶点为A1、A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为(  )
A.相交B.相切
C.相离D.以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线方程为y=
3
x
,两条准线间的距离为1,F1,F2是双曲线的左、右焦点.
(Ⅰ)求双曲线的方程;
(Ⅱ)直线l过坐标原点O且和双曲线交于两点M,N,点P为双曲线上异于M,N的一点,且直线PM,PN的斜率均存在,求kPM•kPN的值.

查看答案和解析>>


同步练习册答案