精英家教网 > 高中数学 > 题目详情
设m∈N*,n∈N*,若f(x)=(1+2x)m+(1+3x)n的展开式中x的系数为13,则x2的系数为(  )
A.31B.40C.31或40D.不确定
相关习题

科目:高中数学 来源: 题型:

5、设m∈N*,n∈N*,若f(x)=(1+2x)m+(1+3x)n的展开式中x的系数为13,则x2的系数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m∈N*,n∈N*,若f(x)=(1+2x)m+(1+3x)n的展开式中x的系数为13,则x2的系数为(  )
A.31B.40C.31或40D.不确定

查看答案和解析>>

科目:高中数学 来源:2011年《新高考全案》高考总复习单元检测卷13:计数原理(理科)(解析版) 题型:选择题

设m∈N*,n∈N*,若f(x)=(1+2x)m+(1+3x)n的展开式中x的系数为13,则x2的系数为( )
A.31
B.40
C.31或40
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设m∈N*,n∈N*,若f(x)=(1+2x)m+(1+3x)n的展开式中x的系数为13,则x2的系数为


  1. A.
    31
  2. B.
    40
  3. C.
    31或40
  4. D.
    不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x2+2x+a(0≤x≤3,a≠0)的最大值为m,最小值为n.
(1)求m,n的值(用a表示).
(2)若角θ的终边经过点P(m-1,n+3),求sinθ+cosθ+tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=2+
1
a
-
1
a2x
,实数a∈R且a≠0.
(1)设mn>0,判断函数f(x)在[m,n]上的单调性,并说明理由;
(2)设0<m<n且a>0时,f(x)的定义域和值域都是[m,n],求n-m的最大值;
(3)若不等式|a2f(x)|≤2x对x≥1恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a-
1
|x|

(1)若x∈[
2
2
,+∞),①判断函数g(x)=f(x)-2x的单调性并加以证明;②如果f(x)≤2x恒成立,求a的取值范围;
(2)若总存在m,n使得当x∈[m,n]时,恰有f(x)∈[2m,2n],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=loga(1-x),g(x)=loga(1+x),(a>0且a≠1).
(Ⅰ)设函数F(x)=f(x)-g(x),判断函数F(x)的奇偶性并证明;
(Ⅱ)若关于x的方程g(m+2x-x2)=f(x)有实数根,求实数m的范围;
(Ⅲ)当a>1时,不等式f(n-x)>
12
g(x)对任意x∈[0,1]恒成立,求实数n的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=-x2+2x+a(0≤x≤3,a≠0)的最大值为m,最小值为n.
(1)求m,n的值(用a表示).
(2)若角θ的终边经过点P(m-1,n+3),求sinθ+cosθ+tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=loga(1-x),g(x)=loga(1+x),(a>0且a≠1).
(Ⅰ)设函数F(x)=f(x)-g(x),判断函数F(x)的奇偶性并证明;
(Ⅱ)若关于x的方程g(m+2x-x2)=f(x)有实数根,求实数m的范围;
(Ⅲ)当a>1时,不等式f(n-x)>数学公式g(x)对任意x∈[0,1]恒成立,求实数n的范围.

查看答案和解析>>


同步练习册答案