精英家教网 > 高中数学 > 题目详情
过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点F(c,0)的弦中最短弦长是(  )
A.
2b2
a
B.
2a2
b
C.
2c2
a
D.
2c2
b
相关习题

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点F(c,0)的弦中最短弦长是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点F(c,0)的弦中最短弦长是(  )
A.
2b2
a
B.
2a2
b
C.
2c2
a
D.
2c2
b

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点F引直线l:y=
b
a
x
的垂线FM,垂足为M,l交椭圆于P、Q两点,若
PM
=3
MQ
,则该椭圆的离心率为
2-
2
2-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(  )
A、(0,
2
2
]
B、(0,
1
2
]
C、[
2
-1
,1)
D、[
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形.
(1)求椭圆的标准方程;
(2)已知Q(x0,y0)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F到过顶点A(-a,0)、B(0,b)的直线的距离等于
7
7
b
,则椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源:四川 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(  )
A.(0,
2
2
]
B.(0,
1
2
]
C.[
2
-1
,1)
D.[
1
2
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F到过顶点A(-a,0)、B(0,b)的直线的距离等于
7
7
b
,则椭圆的离心率为(  )
A.
1
2
B.
4
5
C.
7-
7
6
D.
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F斜率是1的直线交椭圆于A、B两点,若
AF
=2
FB
,则椭圆的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为A,直线AF的倾斜角为45°,
(1)求椭圆的离心率;
(2)设过点A且与AF垂直的直线与椭圆右准线的交点为B,过A、B、F三点的圆M恰好与直线3x-y+3=0相切,求椭圆的方程及圆M的方程.

查看答案和解析>>


同步练习册答案