精英家教网 > 高中数学 > 题目详情
若函数y=2cosωx在区间[0,
3
]上递减,且有最小值1,则ω的值可以是(  )
A.2B.
1
2
C.3D.
1
3
相关习题

科目:高中数学 来源: 题型:

若函数y=2cosωx在区间[0,
3
]上递减,且有最小值1,则ω的值可以是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=2cosωx在区间[0,
3
]上递减,且有最小值1,则ω的值可以是(  )
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=2cosωx在区间[0,
3
]上递减,且有最小值1,则ω的值可以是(  )
A.2B.
1
2
C.3D.
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

[2014·郑州调研]若函数y=2cosωx在区间[0,]上递减,且有最小值1,则ω的值可以是(  )

A.2 B. C.3 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②函数y=2cos(
π
3
-2x)
的单调递减区间是[kπ+
π
6
,kπ+
3
](k∈Z)

③若f(x)=2cos2
x
2
-1,则f(x+π)=-f(x)对x∈R恒成立

④要得到函数y=sin(
x
2
-
π
4
)的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位

其中是真命题的有
②③
②③
(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②函数y=2cos(
π
3
-2x)
的单调递减区间是[kπ+
π
6
,kπ+
3
](k∈Z)

③若f(x)=2cos2
x
2
-1,则f(x+π)=-f(x)对x∈R恒成立

④要得到函数y=sin(
x
2
-
π
4
)的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位

其中是真命题的有______(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①把y=2cos(3x+
π
6
)的图象上每点的横坐标和纵坐标都变为原来的
3
2
倍,再把图象向右平移
π
2
单位,所得图象解析式为y=2sin(2x-
π
3

②若m∥α,n∥β,α⊥β,则m⊥n
③在△ABC中,M是BC的中点,AM=3,点P在AM上且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
 )
等于-4.
④函数f(x)=xsinx在区间[0,
π
2
]
上单调递增,函数f(x)在区间[-
π
2
,0]
上单调递减.
其中是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列四个命题:
①把y=2cos(3x+
π
6
)的图象上每点的横坐标和纵坐标都变为原来的
3
2
倍,再把图象向右平移
π
2
单位,所得图象解析式为y=2sin(2x-
π
3

②若mα,nβ,α⊥β,则m⊥n
③在△ABC中,M是BC的中点,AM=3,点P在AM上且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
 )
等于-4.
④函数f(x)=xsinx在区间[0,
π
2
]
上单调递增,函数f(x)在区间[-
π
2
,0]
上单调递减.
其中是真命题的是(  )
A.①②④B.①③④C.③④D.①③

查看答案和解析>>


同步练习册答案