ÒÑÖªÏÂÁÐËĸöÃüÌ⣺
¢Ù°Ñy=2cos£¨3x+
¦Ð
6
£©µÄͼÏóÉÏÿµãµÄºá×ø±êºÍ×Ý×ø±ê¶¼±äΪԭÀ´µÄ
3
2
±¶£¬ÔÙ°ÑͼÏóÏòÓÒƽÒÆ
¦Ð
2
µ¥Î»£¬ËùµÃͼÏó½âÎöʽΪy=2sin£¨2x-
¦Ð
3
£©
¢ÚÈôm¡Î¦Á£¬n¡Î¦Â£¬¦Á¡Í¦Â£¬Ôòm¡Ín
¢ÛÔÚ¡÷ABCÖУ¬MÊÇBCµÄÖе㣬AM=3£¬µãPÔÚAMÉÏÇÒÂú×ã
AP
=2
PM
£¬Ôò
PA
•(
PB
+
PC
 )
µÈÓÚ-4£®
¢Üº¯Êýf£¨x£©=xsinxÔÚÇø¼ä[0£¬
¦Ð
2
]
Éϵ¥µ÷µÝÔö£¬º¯Êýf£¨x£©ÔÚÇø¼ä[-
¦Ð
2
£¬0]
Éϵ¥µ÷µÝ¼õ£®
ÆäÖÐÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
·ÖÎö£º¢Ù°Ñy=2cos£¨3x+
¦Ð
6
£©µÄͼÏóÉÏÿµãµÄºá×ø±êºÍ×Ý×ø±ê¶¼±äΪԭÀ´µÄ
3
2
±¶£¬ÔÙ°ÑͼÏóÏòÓÒƽÒÆ
¦Ð
2
µ¥Î»£¬ËùµÃͼÏó½âÎöʽΪy=3sin£¨2x-
¦Ð
3
£©£»¢ÚÒ²ÓпÉÄÜm¡În£¬¢ÛÓÉÒÑÖª¿ÉµÃAP=2£¬PΪÈý½ÇÐεÄÖØÐÄ£¬¶ø
PA
•(
PB
+
PC
)=2
PA
PM
=-
PA
2
=-4
£®£»¢ÜÀûÓûù±¾³õµÈº¯ÊýµÄµ¥µ÷ÐÔ¿ÉÖªº¯Êýf£¨x£©=xsinxÔÚÇø¼ä[0£¬
¦Ð
2
]
Éϵ¥µ÷µÝÔöÇÒΪżº¯Êý£¬¸ù¾Ýżº¯ÊýµÄ¶Ô³ÆÐԿɵú¯Êýf£¨x£©ÔÚÇø¼ä[-
¦Ð
2
£¬0]
Éϵ¥µ÷µÝ¼õ
½â´ð£º½â£º¢Ù°Ñy=2cos£¨3x+
¦Ð
6
£©µÄͼÏóÉÏÿµãµÄºá×ø±êºÍ×Ý×ø±ê¶¼±äΪԭÀ´µÄ
3
2
±¶£¬ÔÙ°ÑͼÏóÏòÓÒƽÒÆ
¦Ð
2
µ¥Î»£¬ËùµÃͼÏó½âÎöʽΪy=3sin£¨2x-
¦Ð
3
£©¹Ê¢Ù´íÎó
¢ÚÈôm¡Î¦Á£¬n¡Î¦Â£¬¦Á¡Í¦Â£¬Ôòm¡Ín»òm¡În£¬¹Ê¢Ú´íÎó
¢ÛÓÉÒÑÖª¿ÉµÃAP=2£¬PΪÈý½ÇÐεÄÖØÐÄ£¬
PA
•(
PB
+
PC
)=2
PA
PM
=-
PA
2
=-4
£®¢ÛÕýÈ·
¢Üº¯Êýf£¨x£©=xsinxÔÚÇø¼ä[0£¬
¦Ð
2
]
Éϵ¥µ÷µÝÔöÇÒΪżº¯Êý£¬¹Êº¯Êýf£¨x£©ÔÚÇø¼ä[-
¦Ð
2
£¬0]
Éϵ¥µ÷µÝ¼õ£®¢ÜÕýÈ·
¹ÊÑ¡£ºC
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÈý½Çº¯ÊýµÄͼÏóµÄƽÒÆ¡¢Õñ·ù¼°ÖÜÆڱ任£¬ÏßÏß´¹Ö±µÄÅжϣ¬ÏòÁ¿¼Ó·¨µÄƽÐÐËıßÐη¨Ôò£¬º¯ÊýÆæżÐÔ¼°µ¥µ÷ÐÔµÄÅжϣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

7¡¢ÒÑÖªÏÂÁÐËĸöÃüÌ⣺¢Ù¡°Èôxy=0£¬Ôòx=0ÇÒy=0¡±µÄÄæ·ñÃüÌ⣻
¢Ú¡°Õý·½ÐÎÊÇÁâÐΡ±µÄ·ñÃüÌ⣻
¢Û¡°Èôac2£¾bc2£¬Ôòa£¾b¡±µÄÄæÃüÌ⣻
¢ÜÈô¡°m£¾2£¬Ôò²»µÈʽx2-2x+m£¾0µÄ½â¼¯ÎªR¡±£®
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏÂÁÐËĸöÃüÌ⣺
¢ÙÈôº¯Êýy=f£¨x£©ÔÚx¡ã´¦µÄµ¼Êýf'£¨x¡ã£©=0£¬ÔòËüÔÚx=x¡ã´¦Óм«Öµ£»
¢Ú²»ÂÛmΪºÎÖµ£¬Ö±Ïßy=mx+1¾ùÓëÇúÏß
x2
4
+
y2
b2
=1
Óй«¹²µã£¬Ôòb¡Ý1£»
¢ÛÉèÖ±Ïßl1¡¢l2µÄÇãб½Ç·Ö±ðΪ¦Á¡¢¦Â£¬ÇÒ1+tan¦Â-tan¦Á+tan¦Átan¦Â=0£¬Ôòl1ºÍl2µÄ¼Ð½ÇΪ45¡ã£»
¢ÜÈôÃüÌâ¡°´æÔÚx¡ÊR£¬Ê¹µÃ|x-a|+|x+1|¡Ü2¡±ÊǼÙÃüÌ⣬Ôò|a+1|£¾2£»
ÒÔÉÏËĸöÃüÌâÕýÈ·µÄÊÇ
 
£¨ÌîÈëÏàÓ¦ÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏÂÁÐËĸöÃüÌ⣺
¢Ùº¯Êýf£¨x£©=2xÂú×㣺¶ÔÈÎÒâx1£¬x2¡ÊR£¬ÓÐf£¨
x1+x2
2
£©£¼
1
2
[f£¨x1£©+f£¨x2£©]£»
¢Úº¯Êýf£¨x£©=log2(x+
1+x2
)
£¬g£¨x£©=1+
2
2x-1
¾ùÊÇÆ溯Êý£»
¢ÛÈôº¯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨1£¬0£©³ÉÖÐÐĶԳÆͼÐΣ¬ÇÒÂú×ãf£¨4-x£©=f£¨x£©£¬ÄÇôf£¨2£©=f£¨2012£©£»
¢ÜÉèx1£¬x2ÊǹØÓÚxµÄ·½³Ì|logax|=k£¨a£¾0£¬a¡Ù1£©µÄÁ½¸ù£¬Ôòx1x2=1£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏÂÁÐËĸöÃüÌ⣺
£¨1£©ÒÑÖªÉÈÐεÄÃæ»ýΪ24¦Ð£¬»¡³¤Îª8¦Ð£¬Ôò¸ÃÉÈÐεÄÔ²ÐĽÇΪ
4¦Ð
3
£»
£¨2£©Èô¦ÈÊǵڶþÏóÏ޽ǣ¬Ôò
cos
¦È
2
sin
¦È
2
£¼0£»
£¨3£©ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬½Ç¦ÁµÄÖÕ±ßÔÚÖ±Ïß3x+4y=0ÉÏ£¬Ôòtan¦Á=-
3
4
£»
£¨4£©Âú×ãsin¦È£¾
1
2
µÄ½Ç¦ÈÈ¡Öµ·¶Î§ÊÇ£¨
¦Ð
6
+2k¦Ð£¬
5¦Ð
6
+2k¦Ð£©£¬£¨k¡ÊZ£©
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
£¨1£©£¬£¨3£©£¬£¨4£©£®
£¨1£©£¬£¨3£©£¬£¨4£©£®
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏÂÁÐËĸöÃüÌ⣺
¢ÙÈôtan¦È=2£¬Ôòsin2¦È=
4
5
£»
¢Úº¯Êýf(x)=lg(x+
1+x2
)
ÊÇÆ溯Êý£»
¢Û¡°a£¾b¡±ÊÇ¡°2a£¾2b¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÜÔÚ¡÷ABCÖУ¬ÈôsinAcosB=sinC£¬Ôò¡÷ABCÖÐÊÇÖ±½ÇÈý½ÇÐΣ®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸