精英家教网 > 高中数学 > 题目详情
设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的准线方程为(  )
A.y=±
a2
c
B.y=±
b2
c
C.x=±
a2
c
D.x=±
b2
c
相关习题

科目:高中数学 来源: 题型:

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的准线方程为(  )
A、y=±
a2
c
B、y=±
b2
c
C、x=±
a2
c
D、x=±
b2
c

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是过左焦点F且与x轴不垂直的弦,若在左准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是
(
3
3
,1)
(
3
3
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的准线方程为(  )
A.y=±
a2
c
B.y=±
b2
c
C.x=±
a2
c
D.x=±
b2
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是过左焦点F且与x轴不垂直的弦,若在左准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是过左焦点F且与x轴不垂直的弦,若在左准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一个顶点为M(0,1),离心率e=
6
3

(1)求椭圆的方程;
(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:重庆模拟 题型:解答题

已知椭圆方程为
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一个顶点为M(0,1),离心率e=
6
3

(1)求椭圆的方程;
(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:x-y=0与以原点为圆心,以椭圆C1的短半轴长为半径的圆相切,曲线C2以x轴为对称轴.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,曲线C2上任意一点M到l1距离与MF2相等,求曲线C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的点,且AB⊥BC,求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源:舟山模拟 题型:解答题

已知C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:x-y=0与以原点为圆心,以椭圆C1的短半轴长为半径的圆相切,曲线C2以x轴为对称轴.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,曲线C2上任意一点M到l1距离与MF2相等,求曲线C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的点,且AB⊥BC,求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以AF2为直径的圆与直线y=
3
x+2
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM、PN为邻边的平行四边形是菱形?若存在,求实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案