精英家教网 > 高中数学 > 题目详情
若数列{an}的前n项和为Sn,则下列命题:
(1)若数列{an}是递增数列,则数列{Sn}也是递增数列;
(2)数列{Sn}是递增数列的充要条件是数列{an}的各项均为正数;
(3)若{an}是等差数列(公差d≠0),则S1?S2…Sk=0的充要条件是a1?a2…ak=0.
(4)若{an}是等比数列,则S1?S2…Sk=0(k≥2,k∈N)的充要条件是an+an+1=0.
其中,正确命题的个数是(  )
A.0个B.1个C.2个D.3个
相关习题

科目:高中数学 来源: 题型:

4、设数列{an}的前n项和为Sn,关于数列{an}有下列三个命题:
①若数列{an}既是等差数列,又是等比数列,则an=an+1
②若Sn=an2+bn(a,b∈R),则数列{an}是等差数列;
③若Sn=1-(-1)n,则数列{an}是等比数列.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,关于数列{an}有下列四个命题:
①若{an}既是等差数列又是等比数列,则Sn=na1
②若Sn=2+(-1)n,则{an}是等比数列;
③若Sn=an2+bn(a,b∈R),则{an}是等差数列;
④若Sn=pn,则无论p取何值时{an}一定不是等比数列.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设数列{an}的前n项和为Sn,关于数列{an}有下列四个命题:
①若{an}既是等差数列又是等比数列,则Sn=na1
②若Sn=2+(-1)n,则{an}是等比数列;
③若Sn=an2+bn(a,b∈R),则{an}是等差数列;
④若Sn=pn,则无论p取何值时{an}一定不是等比数列.
其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市文博中学高二(上)期中数学试卷(解析版) 题型:选择题

设数列{an}的前n项和为Sn,关于数列{an}有下列三个命题:
①若数列{an}既是等差数列,又是等比数列,则an=an+1
②若Sn=an2+bn(a,b∈R),则数列{an}是等差数列;
③若Sn=1-(-1)n,则数列{an}是等比数列.
其中真命题的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市文博中学高二(上)期中数学试卷(解析版) 题型:选择题

设数列{an}的前n项和为Sn,关于数列{an}有下列三个命题:
①若数列{an}既是等差数列,又是等比数列,则an=an+1
②若Sn=an2+bn(a,b∈R),则数列{an}是等差数列;
③若Sn=1-(-1)n,则数列{an}是等比数列.
其中真命题的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源:2006-2007学年安徽省滁州市凤阳中学高一(下)期末数学练习试卷(必修5)(解析版) 题型:填空题

设数列{an}的前n项和为Sn,关于数列{an}有下列四个命题:
①若{an}既是等差数列又是等比数列,则Sn=na1
②若Sn=2+(-1)n,则{an}是等比数列;
③若Sn=an2+bn(a,b∈R),则{an}是等差数列;
④若Sn=pn,则无论p取何值时{an}一定不是等比数列.
其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2011年湖北省武汉市武昌区高三五月调考数学试卷(文科)(解析版) 题型:选择题

设数列{an}的前n项和为Sn,关于数列{an}有下列三个命题:
①若数列{an}既是等差数列,又是等比数列,则an=an+1
②若Sn=an2+bn(a,b∈R),则数列{an}是等差数列;
③若Sn=1-(-1)n,则数列{an}是等比数列.
其中真命题的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设数列{an}的前n项和为Sn,关于数列{an}有下列四个命题:
①若{an}既是等差数列又是等比数列,则Sn=na1
②若Sn=2+(-1)n,则{an}是等比数列;
③若Sn=an2+bn(a,b∈R),则{an}是等差数列;
④若Sn=pn,则无论p取何值时{an}一定不是等比数列.
其中正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:0112 期末题 题型:填空题

设数列{an}的前n项和为Sn,关于数列{an}有下列四个命题:①若{an}既是等差数列又是等比数列,则Sn=na1;②若Sn=2+(-1)n,则{an}是等比数列;③若Sn=an2+bn(a,b∈R),则{an}是等差数列;④若Sn=Pn,则无论p取何值时{an}一定不是等比数列。其中正确命题的序号是(    )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sna1=1,a4=8,Sn=b•qn+c(q≠0,q≠±1,bc≠0,b+c=0),现把数列{an}的各项排成如图所示的三角形形状.记A(m,n)为第m行从左起第n个数(m、n∈N*).有下列命题:
①{an}为等比数列且其公比q=±2;
②当n=2m(m>3)时,A(m,n)不存在;
a28=A(6,9),A(11,1)=2100
④假设m为大于5的常数,且A(m,1)=am1A(m,2)=am2A(m,k)=amk,其中amk为A(m,n)的最大值,从所有m1,m2,m3,…,mk中任取一个数,若取得的数恰好为奇数的概率为
m-12m-1
,则m必然为偶数.
其中你认为正确的所有命题的序号是
②③④
②③④

查看答案和解析>>


同步练习册答案