精英家教网 > 高中数学 > 题目详情
已知平面上一点P在原坐标系中的坐标为(0,m)(m≠0),而在平移后所得到的新坐标系中的坐标为(m,0),那么新坐标系的原点O′在原坐标系中的坐标为( A )
A.(-m,m)B.(m,-m)C.(m,m)D.(-m,-m)
相关习题

科目:高中数学 来源: 题型:

已知平面上一点P在原坐标系中的坐标为(0,m)(m≠0),而在平移后所得到的新坐标系中的坐标为(m,0),那么新坐标系的原点O′在原坐标系中的坐标为( A )
A、(-m,m)B、(m,-m)C、(m,m)D、(-m,-m)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上一点P在原坐标系中的坐标为,而在平移后所得到的新坐标系中的坐标为,那么新坐标系的原点在原坐标系的坐标为:

         A.            B.                      C.               D.

                                              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面上一点P在原坐标系中的坐标为(0,m)(m≠0),而在平移后所得到的新坐标系中的坐标为(m,0),那么新坐标系的原点O′在原坐标系中的坐标为( A )
A.(-m,m)B.(m,-m)C.(m,m)D.(-m,-m)

查看答案和解析>>

科目:高中数学 来源:1987年全国统一高考数学试卷(文科)(解析版) 题型:选择题

已知平面上一点P在原坐标系中的坐标为(0,m)(m≠0),而在平移后所得到的新坐标系中的坐标为(m,0),那么新坐标系的原点O′在原坐标系中的坐标为( A )
A.(-m,m)
B.(m,-m)
C.(m,m)
D.(-m,-m)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知平面上一点P在原坐标系中的坐标为(0,m)(m≠0),而在平移后所得到的新坐标系中的坐标为(m,0),那么新坐标系的原点O′在原坐标系中的坐标为( A )


  1. A.
    (-m,m)
  2. B.
    (m,-m)
  3. C.
    (m,m)
  4. D.
    (-m,-m)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,右顶点为D(2,0),设点A(1,
1
2
).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;
(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省佛山市顺德区高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,0),设点A(1,).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;
(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,右顶点为D(2,0),设点A(1,
1
2
).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;
(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案