精英家教网 > 高中数学 > 题目详情
不等式
x-5
2-x
>0的解集是(  )
A.{x|x>5或x<2}B.{x|2<x<5}C.{x|x>5或x<-2}D.{x|-2<x<5}
相关习题

科目:高中数学 来源: 题型:

不等式
x-5
2-x
>0的解集是(  )
A、{x|x>5或x<2}
B、{x|2<x<5}
C、{x|x>5或x<-2}
D、{x|-2<x<5}

查看答案和解析>>

科目:高中数学 来源:朝阳区二模 题型:单选题

不等式
x-5
2-x
>0的解集是(  )
A.{x|x>5或x<2}B.{x|2<x<5}C.{x|x>5或x<-2}D.{x|-2<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:①f(0)≠0,②当x<0时,f(x)>1,③对任意x,y都有f(x+y)=f(x)•f(y),那么不等式f(x-1)f(x2-2x)≥1的解集是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)满足:①f(0)≠0,②当x<0时,f(x)>1,③对任意x,y都有f(x+y)=f(x)•f(y),那么不等式f(x-1)f(x2-2x)≥1的解集是(  )
A.[-1,2]B.(-∞,-1]∪[2,+∞)
C.[
1-
5
2
1+
5
2
]
D.(-∞,
1-
5
2
]∪[
1+
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

己知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2,那么不等式f(x)<
1
2
的解集是(  )
A、{x|0<x<
5
2
}
B、{x|-
3
2
<x<0}
C、{x|-
3
2
<x<0
0<x<
5
2
}
D、{x|x<-
3
2
0≤x<
5
2
}

查看答案和解析>>

科目:高中数学 来源:东城区二模 题型:单选题

己知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2,那么不等式f(x)<
1
2
的解集是(  )
A.{x|0<x<
5
2
}
B.{x|-
3
2
<x<0}
C.{x|-
3
2
<x<0
0<x<
5
2
}
D.{x|x<-
3
2
0≤x<
5
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=loga(x+1)在(0,+∞)内单调递减;命题Q:不等式 x2+(2a-3)x+1>0的解集为R.如果“P或Q”是真命题,“P且Q”是假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:(考生可以在以下三个题任选一道题作答,如果多做以考生所作的第一道题为准)
(a) 不等式|x-4|-|x-2|>1的解集为
(-∞,
5
2
)
(-∞,
5
2
)

(b) 已知直线l的极坐标方程为:ρcosθ-ρsinθ-
2
=0
,圆C的参数方程为
x=cosθ
y=sinθ
(θ为参数),那么直线l与圆C的位置关系为
相切
相切

(c) 如图已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=
2
,AF:FB:BE=4:2:1
.若CE与圆相切,则CE的长为
7
2
7
2

查看答案和解析>>


同步练习册答案