精英家教网 > 高中数学 > 题目详情
已知P为抛物线x2=2py(p>0)上的动点,F为抛物线的焦点,过F作抛物线在P点处的切线的垂线,垂足为G,则点G的轨迹方程为(  )
A.x2+y2=p2B.y=-
p
2
C.x2+(y-
p
2
)2=
p2
4
D.y=0
相关习题

科目:高中数学 来源: 题型:

已知P为抛物线x2=2py(p>0)上的动点,F为抛物线的焦点,过F作抛物线在P点处的切线的垂线,垂足为G,则点G的轨迹方程为(  )
A、x2+y2=p2
B、y=-
p
2
C、x2+(y-
p
2
)2=
p2
4
D、y=0

查看答案和解析>>

科目:高中数学 来源:东城区二模 题型:单选题

已知P为抛物线x2=2py(p>0)上的动点,F为抛物线的焦点,过F作抛物线在P点处的切线的垂线,垂足为G,则点G的轨迹方程为(  )
A.x2+y2=p2B.y=-
p
2
C.x2+(y-
p
2
)2=
p2
4
D.y=0

查看答案和解析>>

科目:高中数学 来源:2009年北京市东城区高考数学二模试卷(理科)(解析版) 题型:选择题

已知P为抛物线x2=2py(p>0)上的动点,F为抛物线的焦点,过F作抛物线在P点处的切线的垂线,垂足为G,则点G的轨迹方程为( )
A.x2+y2=p2
B.
C.
D.y=0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知P为抛物线x2=2py(p>0)上的动点,F为抛物线的焦点,过F作抛物线在P点处的切线的垂线,垂足为G,则点G的轨迹方程为


  1. A.
    x2+y2=p2
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点的距离为
174

(I)求p于m的值;
(Ⅱ)设抛物线C上一点p的横坐标为t(t>0),过p的直线交C于另一点Q,交x轴于M点,过点Q作PQ的垂线交C于另一点N.若MN是C的切线,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F为抛物线C1:x2=2py(p>0)的焦点,若过焦点F的直线l交C1于A,B两点,使抛物线C1在点A,B处的两条切线的交点M恰好在圆C2:x2+y2=8上.
(I)当p=2时,求点M的坐标;
(II)求△MAB面积的最小值及取得最小值时的抛物线C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点的距离为5,则m=
±4
±4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)上一点A(a,4)到其准线的距离为
174

(Ⅰ)求p与a的值;
(Ⅱ)设抛物线C上动点P的横坐标为t(0<t<2),过点P的直线交C于另一点Q,交x轴于M点(直线PQ的斜率记作k).过点Q作PQ的垂线交C于另一点N.若MN恰好是C的切线,问k2+tk-2t2是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点的距离为
174

(I)求p与m的值;
(II)设抛物线C上一点P的横坐标为t(t>0),过P的直线交C于另一点Q,交x轴于点M,过点M作抛物线的切线MN,N(非原点)为切点,以MN为直径作圆A,若圆A恰好经过点Q,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:x2=2py(p>0)上一点A(a,4)到其准线的距离为数学公式
(Ⅰ)求p与a的值;
(Ⅱ)设抛物线C上动点P的横坐标为t(0<t<2),过点P的直线交C于另一点Q,交x轴于M点(直线PQ的斜率记作k).过点Q作PQ的垂线交C于另一点N.若MN恰好是C的切线,问k2+tk-2t2是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>


同步练习册答案