精英家教网 > 高中数学 > 题目详情
设函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为m.若m≥k对任意的b、c恒成立,则k的最大值是(  )
A.1B.
1
2
C.
1
3
D.
1
4
相关习题

科目:高中数学 来源:上饶二模 题型:单选题

设函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为m.若m≥k对任意的b、c恒成立,则k的最大值是(  )
A.1B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

科目:高中数学 来源:2010年江西省上饶市高考数学二模试卷(理科)(解析版) 题型:选择题

设函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为m.若m≥k对任意的b、c恒成立,则k的最大值是( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为m.若m≥k对任意的b、c恒成立,则k的最大值是


  1. A.
    1
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.
(1)证明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一个实数根,判断f(m-4)的符号,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+2bx+c,若f(x)=0有两个根x1、x2,且x1∈[-1,0],x2∈[1,2].
(1)求b,c满足的约束条件,并在下面的坐标平面内画出满足这些条件的点(b,c)的区域;
(2)若令g(x)=bx2+2cx,其中x∈[1,2],求证:-10≤g(x)≤-
12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.
(1)证明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一个实数根,判断f(m-4)的符号,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+2bx+c,若f(x)=0有两个根x1、x2,且x1∈[-1,0],x2∈[1,2].
(1)求b,c满足的约束条件,并在下面的坐标平面内画出满足这些条件的点(b,c)的区域;
(2)若令g(x)=bx2+2cx,其中x∈[1,2],求证:数学公式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.
(1)证明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一个实数根,判断f(m-4)的符号,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2+2bx+c,若f(x)=0有两个根x1、x2,且x1∈[-1,0],x2∈[1,2].
(1)求b,c满足的约束条件,并在下面的坐标平面内画出满足这些条件的点(b,c)的区域;
(2)若令g(x)=bx2+2cx,其中x∈[1,2],求证:-10≤g(x)≤-
1
2
精英家教网

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆实验中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.
(1)证明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一个实数根,判断f(m-4)的符号,并证明你的结论.

查看答案和解析>>


同步练习册答案