精英家教网 > 高中数学 > 题目详情
给定函数①y=x -
1
2
,②y=2 x2-3x+3,③y=log 
1
2
|1-x|,④y=sin
πx
2
,其中在(0,1)上单调递减的个数为(  )
A.0B.1个C.2个D.3个
相关习题

科目:高中数学 来源: 题型:

给定函数①y=x -
1
2
,②y=2 x2-3x+3,③y=log 
1
2
|1-x|,④y=sin
πx
2
,其中在(0,1)上单调递减的个数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给定函数①y=x -
1
2
,②y=2 x2-3x+3,③y=log 
1
2
|1-x|,④y=sin
πx
2
,其中在(0,1)上单调递减的个数为(  )
A.0B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
(2)函数y=x3与y=3x的值域相同;
(3)函数f(x)=
5+4x-x2
的单调递增区间为(-∞,2];
(4)函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是
(1)(4)
(1)(4)
(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
(1)函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
(2)函数y=x3与y=3x的值域相同;
(3)函数y=2|x|的最小值是1;
(4)函数f(x)=
5+4x-x2
的单调递增区间为(-∞,2];
(5)函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是
(1)(3)(5)
(1)(3)(5)
 (把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
(1)函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
(2)函数y=x3与y=3x的值域相同;
(3)函数f(x)=
5+4x-x2
的单调递增区间为(-∞,2];
(4)函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是______(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列五个命题:
(1)函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
(2)函数y=x3与y=3x的值域相同;
(3)函数y=2|x|的最小值是1;
(4)函数f(x)=
5+4x-x2
的单调递增区间为(-∞,2];
(5)函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是______ (把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),若存在开区间D,同时满足:①存在t∈D,当x<t时,函数f(x)单调递减,当x>t时,函数f(x)单调递增;②对任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|logax|(a>0,a≠1)为(0,+∞)内的“勾函数”;
(2)若D内的“勾函数”y=g(x)的导函数为y=g′(x),y=g(x)在D内有两个零点x1,x2,求证:g′(
x1+x2
2
)
>0;
(3)对于给定常数λ,是否存在m,使函数h(x)=
1
3
λx3-
1
2
λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>


同步练习册答案