精英家教网 > 高中数学 > 题目详情
已知a∈R,则a=0是函数y=x2+ax+1为偶函数的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
相关习题

科目:高中数学 来源: 题型:

已知a∈R,则a=0是函数y=x2+ax+1为偶函数的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a∈R,则a=0是函数y=x2+ax+1为偶函数的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省温州市八校联考高三(上)期初数学试卷(文科)(解析版) 题型:选择题

已知a∈R,则a=0是函数y=x2+ax+1为偶函数的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:江西模拟 题型:解答题

已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x2
2
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2009年浙江省温州市瑞安中学高考数学三模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线?∥P1P2,则称?为弦P1P2的伴随切线.特别地,当x=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年高考模拟数学专题:压轴大题(解析版) 题型:解答题

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线?∥P1P2,则称?为弦P1P2的伴随切线.特别地,当x=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年山东省潍坊市高考数学模拟试卷A(理科)(解析版) 题型:解答题

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线?∥P1P2,则称?为弦P1P2的伴随切线.特别地,当x=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:江西省重点中学协作体2012届高三第一次联考数学理科试题 题型:044

已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x

(Ⅰ)求函数g(x)在区间(0,e]上的值域;

(Ⅱ)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由;

(Ⅲ)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,my2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中总能使得F(x1)-f(x2)=(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定义域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞);
④定义在R上的函数f(x),若对任意的x∈R都有f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期;
⑤已知a>0,b>0,则
1
a
+
1
b
+2
ab
的最小值是4.     
其中真命题的编号是
①④⑤
①④⑤

查看答案和解析>>


同步练习册答案