精英家教网 > 高中数学 > 题目详情
已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点,P为双曲线右支上一点,且满足|PF2|=|F1F2|,若直线PF1与圆x2+y2=a2相切,则双曲线的离心率e的值为(  )
A.2B.
5
3
C.
5
4
D.
3
2
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>b>0)的两个焦点,A和B是以O(O为坐标原点)为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为(  )
A、
3
B、
5
C、
5
2
D、
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点,P为双曲线右支上一点,且满足|PF2|=|F1F2|,若直线PF1与圆x2+y2=a2相切,则双曲线的离心率e的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是直角三角形,则该双曲线离心率的值等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点,P为双曲线右支上一点,且满足|PF2|=|F1F2|,若直线PF1与圆x2+y2=a2相切,则双曲线的离心率e的值为(  )
A.2B.
5
3
C.
5
4
D.
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a,b>0)
的左右焦点,P为双曲线右支上一点,∠F1PF2=60°,∠F1PF2的角平分线PA交x轴于A,
F1A
=3
AF2
,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦点,以坐标原点O为圆心,以双曲线的半焦距c为半径的圆与双曲线在第一象限的交点为A,与y轴正半轴的交点为B,点A在y轴上的射影为H,
OH
=(0,
3
2
c)

(1)求双曲线的离心率;
(2)若AF1交双曲线于点M,且
F1M
MA
,求λ.

查看答案和解析>>

科目:高中数学 来源:日照二模 题型:单选题

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,过F2与双曲线的一条渐进线平行的直线交另一条渐进线于点M,若∠F1MF2为锐角,则双曲线离心率的取值范围是(  )
A.(1,
2
)
B.(
2
,+∞)
C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a,b>0)
的左右焦点,P为双曲线右支上一点,∠F1PF2=60°,∠F1PF2的角平分线PA交x轴于A,
F1A
=3
AF2
,则双曲线的离心率为(  )
A.2B.
7
2
C.
5
D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(  )
A.(1, 
2
)
B.(
2
, 
3
)
C.(
3
, 2)
D.(2,+∞)

查看答案和解析>>


同步练习册答案