精英家教网 > 高中数学 > 题目详情
已知三条直线l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1关于l2的对称直线与l3垂直,则实数m的值是(  )
A.-8B.-
1
2
C.8D.
1
2
相关习题

科目:高中数学 来源: 题型:

已知三条直线l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1关于l2的对称直线与l3垂直,则实数m的值是(  )
A、-8
B、-
1
2
C、8
D、
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三条直线l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1关于l2的对称直线与l3垂直,则实数m的值是(  )
A.-8B.-
1
2
C.8D.
1
2

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省巢湖市高三(上)质量检测数学试卷(理科)(解析版) 题型:选择题

已知三条直线l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1关于l2的对称直线与l3垂直,则实数m的值是( )
A.-8
B.
C.8
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知三条直线l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1关于l2的对称直线与l3垂直,则实数m的值是


  1. A.
    -8
  2. B.
    数学公式
  3. C.
    8
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
7
10
5

(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的
1
2
;③P点到l1的距离与P点到l3的距离之比是
2
5
?若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),l2:-4x+2y+1=0和l3:x+y-1=0,且l1与l2的距离是
7
5
10

(1)求a的值;
(2)能否找到一点P同时满足下列三个条件:
①P是第一象限的点;
②点P到l1的距离是点P到l2的距离的
1
2

③点P到l1的距离与点P到l3的距离之比是
2
5
?若能,求点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三条直线l1:2x-y+a =" 0" (a>0),直线l2:-4x+2y+1 = 0和直线l3:x+y-1= 0,且l1与l2的距离是
(1)求a的值;
(2)能否找到一点P,使得P点同时满足下列三个条 件:
①P是第一象限的点;
②P 点到l1的距离是P点到l2的距离的 ;
③P点到l1的距离与P点到l3的距离之比是.若能,求P点坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省泰州市泰兴市高一(下)期末数学试卷(解析版) 题型:解答题

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:7.2 两直线的位置关系(解析版) 题型:解答题

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:广东省高考数学一轮复习:8.4 两条直线的交点、距离(解析版) 题型:解答题

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>


同步练习册答案