考点:含字母式子的求值,整数大小的比较
专题:运算顺序及法则
分析:把字母表示的数值代入含字母的式子,求出式子的数字,进而比较得解.
解答:
解:①当a=23时,a+13=23+13=36
因为36<87,所以a+13<87
②当x=0.8时,x÷2=0.8÷2=0.4
因为0.4=0.4,所以x÷2=0.4
③当y=2时,5y=5×2=10
因为10<100,所以5y<100
④当x=9.6时,x-3.8=9.6-3.8=5.8
因为5.8>3.8,所以x-3.8>3.8.
故答案为:<,=,<,>.
点评:解决此题关键是先求出含字母式子的数值,进而比较得解.