分析:(1)原式变为1.5x=150,根据等式的性质,两边同除以1.5即可;
(2)原式变为x÷0.1=300,根据等式的性质,两边同乘0.1即可;
(3)原式变为0.03x+20=50,根据等式的性质,两边同减去20,再同除以0.03即可;
(4)原式变为0.8x-12.6=0.4x,根据等式的性质,两边同减去0.4x,得0.4x-12.6=0,两边同加上12.6,得0.4x=12.6,两边同除以0.4即可.
解答:解:(1)50%x+x=150,
1.5x=150,
1.5x÷1.5=150÷1.5,
x=100;
(2)x÷10%=300,
x÷0.1=300,
x÷0.1×0.1=300×0.1,
x=30;
(3)3%x+20=60×
,
0.03x+20=50,
0.03x+20-20=50-20,
0.03x=30,
0.03x÷0.03=30÷0.03,
x=1000;
(4)
x-12.6=40%x,
0.8x-12.6=0.4x,
0.8x-12.6-0.4x=0.4x-0.4x,
0.4x-12.6=0,
0.4x-12.6+12.6=0+12.6,
0.4x=12.6,
0.4x÷0.4=12.6÷0.4,
x=31.5.
点评:在解方程时应根据等式的性质,即等式两边同加上、同减去、同乘上或同除以某一个数(0除外),等式的两边仍相等,同时注意“=”上下要对齐.