分析 根据分数的拆项公式$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,把每一项拆分为两个分数单位的差,然后通过加减相互抵消简算即可.
解答 解:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{7×8}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{7}$-$\frac{1}{8}$
=1-$\frac{1}{8}$
=$\frac{7}{8}$
故答案为:$\frac{7}{8}$.
点评 本题关键是记住分数的拆项公式:$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
科目:小学数学 来源: 题型:填空题
查看答案和解析>>
科目:小学数学 来源: 题型:填空题
查看答案和解析>>
科目:小学数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com