分析 根据每人最多订3种杂志,最少订一种杂志,分情况讨论,即订一种杂志的方法,订两种杂志的方法,订三种杂志的方法,由此求出最多有几种订法,然后结合我们班学生有36人,根据抽屉原理判断即可.
解答 解:①订阅1种时:可以是任意1种,有3种方法;
②订阅2种时,是从三种中任选2种,共有3种方法;
③订阅3种时就是3份报纸都订阅,有1种方法;
共有:3+3+1=7(种);
我们班学生有36人,
36÷7=5…1(人);
5+1=6(人);
即至少有6名学生订阅的杂志种类相同,
所以原题说法错误.
故答案为:×.
点评 本题分情况讨论后,每一种情况都可以看成简单的组合问题,此题属于典型的抽屉原理的习题,应明确:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体.
科目:小学数学 来源: 题型:选择题
| A. | 1000 | B. | 950 | C. | 95 | D. | 855 |
查看答案和解析>>
科目:小学数学 来源: 题型:计算题
查看答案和解析>>
科目:小学数学 来源: 题型:计算题
| 264×8+8×36 | 99×58 | 65×199+65 | 64000÷125÷8 | 1000-128-72 |
| 54×101 | 38+165+62 | 24×25 | 420÷(7×5) | 360÷45 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com