精英家教网 > 初中数学 > 题目详情

【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
(1)求每吨水的政府补贴优惠价和市场价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小明家5月份用水26吨,则他家应交水费多少元?

【答案】
(1)解:设每吨水的政府补贴优惠价为m元,市场调节价为n元.

解得:

答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.


(2)解:当0≤x≤14时,y=2x;

当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,

故所求函数关系式为:y=


(3)解:∵26>14,

∴小明家5月份水费为3.5×26﹣21=70元,

答:小明家5月份水费70元.


【解析】(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小明家5月份用水26吨,判断其在哪个范围内,代入相应的函数关系式求值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,过点A(2,0)的两条直线L1、L2分别交y轴于点B、C,其中点B在原点上方,点C在原点下方,已知AB=
(1)求点B的坐标;
(2)若△ABC的面积为4,请求出点C的坐标,并直接写出直线L2所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,(1)如果∠1=__________,那么DEAC;(同位角相等,两直线平行)

(2)如果∠1=__________,那么EFBC;(内错角相等,两直线平行)

(3)如果DEF+__________=180°,那么DEAC;(同旁内角互补,两直线平行)

(4)如果∠2+__________=180°,那么ABDF;(同旁内角互补,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点A(2,0)的两条直线l1 , l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=
(1)求点B的坐标;
(2)若△ABC的面积为4,求直线l2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.
(1)求证:四边形DCFE是平行四边形;
(2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE、CF.
(1)求证:DE=CF;
(2)在(1)条件下,如图2,过点E作BG⊥DE,且EG=DE,连接FG,试判断:FG与CE的数量关系和位置关系?给出证明.
(3)如图3,若点E、F分别是CB、BA的延长线上的点,其他条件不变,(2)中结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一件衣服以220元出售,可获利10%,则这件衣服的进价是(
A.110元
B.180元
C.198元
D.200元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小强在河的一边,要测河面的一只船B与对岸码头A的距离,他的做法如下:

①在岸边确定一点C,使C与A,B在同一直线上;

②在AC的垂直方向画线段CD,取其中点O;

③画DFCD使F、O、A在同一直线上;

④在线段DF上找一点E,使E与O、B共线.

他说测出线段EF的长就是船B与码头A的距离.他这样做有道理吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把ax2﹣4ay2分解因式正确的是(  )
A.a(x+2y)(x﹣2y)
B.a(x﹣2y)2
C.a(x﹣4y)2
D.a(x+4y)(x﹣4y)

查看答案和解析>>

同步练习册答案