精英家教网 > 初中数学 > 题目详情

【题目】如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE、CF.
(1)求证:DE=CF;
(2)在(1)条件下,如图2,过点E作BG⊥DE,且EG=DE,连接FG,试判断:FG与CE的数量关系和位置关系?给出证明.
(3)如图3,若点E、F分别是CB、BA的延长线上的点,其他条件不变,(2)中结论是否仍然成立?请直接写出你的判断.

【答案】
(1)证明:∵四边形ABCD是正方形,

∴BC=CD,∠ABC=∠DCE=90°,

在△CBF和△DCE中,

∴△CBF≌△DCE(SAS),

∴CF=DE;


(2)解:结论:GF=EC,GF∥EC,

理由:由(1)知,∠BCF=∠CDE,

∵∠BCF+∠DCF=90°,

∴∠CDE+∠DCF=90°,

∴CF⊥DE,

∵GE⊥DE,

∴EG∥CF,

∵EG=DE,CF=DE,

∴EG=CF,

∴四边形EGFC是平行四边形,

∴GF=EC,GF∥EC;


(3)解:结论仍然成立,GF=EC,GF∥EC,

理由:由(1)知,∠BCF=∠CDE,

∵∠BCF+∠DCF=90°,

∴∠CDE+∠DCF=90°,

∴CF⊥DE,

∵GE⊥DE,

∴EG∥CF,

∵EG=DE,CF=DE,

∴EG=CF,

∴四边形EGFC是平行四边形,

∴GF=EC,GF∥EC.


【解析】(1)由正方形的性质得出BC=CD,∠ABC=∠DCE=90°,进而判断出△CBF≌△DCE(SAS),即可得出结论;(2)先判断出CF⊥DE,进而判断出EG∥CF,即可判断出四边形EGFC是平行四边形,即可得出结论;(3)同(1)的方法即可得出结论.
【考点精析】本题主要考查了平行四边形的判定与性质的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学开展“唱红歌”歌唱比赛,九年级(1)班、九年级(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示:

(1)九(1)班复赛成绩的中位数是九(2)班复赛成绩的众数是
(2)计算九(1)班复赛成绩的平均数和方差.
(3)已知九(2)班复赛成绩的方差是160,则复赛成绩较为稳定的是班.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A是一个单项式,B是一个多项式,且AB1,请写出一组符合条件的 ABA_________B__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x=的抛物线经过B20)、C04)两点,抛物线与x轴的另一交点为A

1)求抛物线的解析式;

2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
(1)求每吨水的政府补贴优惠价和市场价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小明家5月份用水26吨,则他家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列标志既是轴对称图形又是中心对称图形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大学计划为新生配备如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿ABCD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,由以上信息能求出CB的长度吗?请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:

(1)3x2y-6xy+3y;

(2)(a2+1)2-4a2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点(3,﹣4)所在的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

同步练习册答案