分析 (1)由PE与BC平行,得到三角形APE与三角形ABC相似,根据三角形ABC为等边三角形,得到三角形APE为等边三角形,可得出PE=AP=x;
(2)若四边形PEDF为菱形,得到PE=DE=x,由三角形APE为等边三角形得到AE=PE,可得出AE=DE,利用等边对等角得到∠DAC=∠ADE,利用等式的性质得到∠EDC=∠C,利用等角对等边得到DE=EC,即可求出x的值;
解答 解:(1)∵PE∥BC,
∴△APE∽△ABC,
又∵△ABC是等边三角形,
∴△APE是等边三角形,
∴PE=AP=x(0<x<6);
(2)∵四边形PEDF为菱形,
∴PE=DE=x,
又∵△APE是等边三角形,则AE=PE,
∴AE=DE,
∴∠DAC=∠ADE,
又∵∠ADE+∠EDC=∠DAC+∠C=90°,
∴∠EDC=∠C,
∴DE=EC,
∴DE=EC=AE=$\frac{1}{2}$AC=$\frac{1}{2}$AB=3,
即x=3.
点评 本题考查了相似三角形的判定与性质,等边三角形的判定与性质,菱形的性质,平行的性质,以及平行四边形的面积,熟练掌握相似三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com