精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC是等腰直角三角形,∠BAC=90°BE是∠ABC的平分线,DEBC,垂足为D.

1)请你写出图中所有的等腰三角形;

2)请你判断ADBE垂直吗?并说明理由.

3)如果BC=10,求AB+AE的长.

【答案】1ABCABDADEEDC2)垂直,理由见解析(310

【解析】

1)根据等腰三角形的定义判断;

2)由题意可知ABE关于BEDBE对称,可得出BEAD

3)根据(2),可知ABE关于BEDBE对称,且DEC为等腰直角三角形,可推出ABAEBDDCBC10

1ABC等腰直角三角形,BE为角平分线;易证ABE≌△DBE,即ABBDAEDE,所以ABDADE均为等腰三角形;∠C45°EDDCEDC也符合题意,综上所述符合题意的三角形为有ABCABDADEEDC

2ADBE垂直.

证明:由BE为∠ABC的平分线,

知∠ABE=∠DBE,∠BAE=∠BDE90°AEDE

∴△ABE沿BE折叠,一定与DBE重合.

AD是对称点,

ADBE

3)∵ABDADEEDC是等腰三角形

ABBDAEDEDC

ABAEBDDCBC10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂需要在规定时间内生产1000个某种零件,该工厂按一定速度加工6天后,发现按此速度加工下去会延期4天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了,结果如期完成生产任务.

1)求该工厂前6天每天生产多少个这种零件;

2)求规定时间是多少天.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由边长为的小正方形构成的网格,每个小正方形的顶点叫做格点,的顶点在格点.请选择适当的格点用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.

1)如图,作关于直线的对称图形

2)如图,作的高

3)如图,作的中线

4)如图,在直线上作出一条长度为个单位长度的线段的上方,使的值最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,EAD的中点,已知△DEF的面积为2,则平行四边形ABCD的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,

我们称这样的数k言唯一数,交换其首位与个位的数字得到一个新数k',并记F(k)=

(1)最大的四位言唯一数   ,最小的三位言唯一数   

(2)证明:对于任意的四位言唯一数”m,m+m'能被11整除;

(3)设四位言唯一数”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9y≠1,x、y均为整数),若F(n)仍然为言唯一数”,求所有满足条件的四位言唯一数”n.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个全等的含30°60°角的三角板ADE和三角板ABC如图所示放置,EAC三点在一条直线上,连接BD,取BD的中点M,连接MEMC.试判断EMC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点AB(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的完美三角形

1如图2,求出抛物线完美三角形斜边AB的长;

抛物线完美三角形的斜边长的数量关系是

2)若抛物线完美三角形的斜边长为4,求a的值;

3)若抛物线完美三角形斜边长为n,且的最大值为-1,求mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB 是⊙O 的直径,CD 与⊙O 相切于点 C,与 AB 的延长线交于点 DDEAD 且与AC 的延长线交于点 E

1)求证:DC=DE

2)若 AD=2EDAB=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读题:在现今互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了。有一种用因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,当时,,此时可以得到数字密码171920

1)根据上述方法,当时,对于多项式分解因式后可以形成哪些数字密码?(写出三个).

2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为,求出一个由多项式分解因式后得到的密码(只需一个即可).

3)若多项式因式分解后,利用本题的方法,当时可以得到其中一个密码为2434,求的值.

查看答案和解析>>

同步练习册答案