精英家教网 > 初中数学 > 题目详情
26、已知△ABC中,AB=AC,以AB为直线的圆O交BC于D,交AC于E,
(1)如图①,若AB=6,CD=2,求CE的长;
(2)如图②,当∠A为锐角时,使判断∠BAC与∠CBE的关系,并证明你的结论;
(3)若②中的边AB不动,边AC绕点A按逆时针旋转,当∠BAC为钝角时,如图③,CA的延长线与圆O相交于E.
请问:∠BAC与∠CBE的关系是否与(2)中你得出的关系相同?若相同,请加以证明,若不同,请说明理由.
分析:(1)连接AD.根据直径所对的圆周角是直角,得AD⊥BC,根据等腰三角形的性质,得BD=CD=2,再根据割线定理即可求得CE的长;
(2)根据(1)中等腰三角形的三线合一,得AD平分∠BAC,结合圆周角定理,即可得∠BAC=2∠CBE;
(3)连接AD.根据等腰三角形的三线合一和圆内接四边形的性质,即可证明∠BAC=2∠CBE.
解答:解:(1)连接AD.
∵AB为直径,
∴AD⊥BC.
又∵AB=AC,
∴BD=CD.
又CD=2,
∴BD=2.
由CE•CA=CD•CB,得
6•CE=2•(2+2),
∴CE=1.

(2)∠BAD与∠CBE的关系是:∠BAC=2∠CBE.理由如下:
由(1),得AD⊥BC.
又AB=AC,
∴∠1=∠2.
又∠2=∠CBE,
∴∠BAC=2∠CBE.

(3)相同.理由如下:
连接AD.
∵AB为直径,
∴AD⊥BC,
又AB=AC,
∴∠1=∠2,
∵∠CAD是圆内接四边形AEBD的外角,
∴∠2=∠CBE,
∴∠CAB=2∠CBE.
点评:此题综合运用了圆周角定理的推论、等腰三角形的性质、圆内接四边形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案