精英家教网 > 初中数学 > 题目详情
如图,△OAC中,以O为圆心、OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.                                      
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.
(1) 证明:∵点A、B在⊙上      
∴OB=OA                
∴∠OBA=∠ OAB               
∵∠CAD=∠CDA=∠BDO                
∴∠CAD+∠OAB=∠BDO+∠OBA                
∵OB⊥OC         ∴∠CAD+∠OAB=90°       
∴∠OAC=90°,  ∴AC是⊙O的切线
(2) 解: 设AC的长为x
∵∠CAD=∠CDA
∴CD长为x
由(1)知OA⊥AC
∴在Rt△OAC中,OA2+AC2=OC  即52+x2=(1+x)2
∴=12,  即线段AC长为12
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•遵义)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(贵州遵义卷)数学(带解析) 题型:解答题

如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(贵州遵义卷)数学(解析版) 题型:解答题

如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.

(1)判断AC与⊙O的位置关系,并证明你的结论;

(2)若OA=5,OD=1,求线段AC的长.

 

查看答案和解析>>

科目:初中数学 来源:2012年贵州省遵义市中考数学试卷(解析版) 题型:解答题

如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

查看答案和解析>>

同步练习册答案