精英家教网 > 初中数学 > 题目详情

【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接ADBD.则下列结论:

AC=AD;②BDAC;③四边形ACED是菱形

其中正确的个数是(

A0 B1 C2 D3

【答案】D

【解析】

试题分析:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线yx24x1的顶点坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在|﹣2|,(﹣2)3,﹣|﹣2|,﹣(﹣2)这四个数中,负数共有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在△AFD和△CEB中,点A、E、F、C在同一条直线上.有下面四个论断:

(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.

请用其中三个作为条件,余下一个作为结论,进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是( ).

A.(a)2(a)3=a6B.(a2)3 a6= a12

C.a10÷a2=a5D.a2+a3= a5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学问题:计算(其中mn都是正整数,且m≥2n≥1).

探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.

探究一:计算

1次分割,把正方形的面积二等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为

3次分割,把上次分割图中空白部分的面积继续二等分,

n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为,最后空白部分的面积是

根据第n次分割图可得等式: =1

探究二:计算

1次分割,把正方形的面积三等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为

3次分割,把上次分割图中空白部分的面积继续三等分,

n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为,最后空白部分的面积是

根据第n次分割图可得等式: =1

两边同除以2,得=.

探究三:计算

(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算

(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)

根据第n次分割图可得等式:      

所以, =      

拓广应用:计算

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮家与姥姥家相距24km,小亮800从家出发,骑自行车去姥姥家.妈妈830从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程Skm)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是( )

A. 小亮骑自行车的平均速度是12km/h

B. 妈妈比小亮提前0.5小时到达姥姥家

C. 妈妈在距家12km处追上小亮

D. 930妈妈追上小亮

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算中,正确的是( )
A.a3÷a2=a
B.a2+a2=a4
C.(ab)3=a4
D.2ab﹣b=2a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”

【探究证明】

1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;

2)如图2,求证:∠OAB=∠OAE

【归纳猜想】

3)图1、图2中的“叠弦角”的度数分别为

4)图n中,“叠弦三角形” 等边三角形(填“是”或“不是”)

5)图n中,“叠弦角”的度数为 (用含n的式子表示)

查看答案和解析>>

同步练习册答案