精英家教网 > 初中数学 > 题目详情

【题目】如图,已知⊙O的直径AB=12,弦AC=10,D是弧BC的中点,过点D作DE⊥AC,交AC的延长线于点E.

(1)求证:DE是⊙O的切线;

(2)求AE的长.

【答案】(1)见解析;(2)11.

【解析】分析:(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出ODAE平行,利用两直线平行同旁内角互补得到ODDE垂直,即可得证;

(2)过OOF垂直于AC,利用垂径定理得到FAC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.

详解:(1)连接OD,

D为弧BC的中点,∴弧BD=CD,

∴∠BOD=BAE,ODAE,

DEAC,∴∠ADE=90°,∴∠AED=90°,

ODDE,

DE为圆O的切线;

(2)过点OOFAC,

AC=10,AF=CF=AC=5,

∵∠OFE=DEF=ODE=90°,

∴四边形OFED为矩形,

FE=OD=AB,

AB=12,FE=6,

AE=AF+FE=5+6=11.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A1-k+4).

1)试确定这两个函数的表达式;

2)求出这两个函数图象的另一个交点B的坐标,并求△A0B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°AC=BCAD平分∠CABBC于点DDE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

(1)若∠ACD=114°,求∠MAB的度数;

(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角三角形ABC中,∠ABC=90°.

(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);

(2)证明:AC是所作⊙O的切线;

(3)BC=A=30°,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)

(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC⊙O的直径,AC=4BD分别在AC两侧的圆上,∠BAD=60°BDAC的交点为E

1求点OBD的距离及∠OBD的度数;

2DE=2BE,求的值CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示时间,y 表示张强离家的距离。根据图象提供的信息,以下四个说法错误的是(

A. 体育场离张强家2.5千米 B. 张强在体育场锻炼了15分钟

C. 体育场离早餐店4千米 D. 张强从早餐店回家的平均速度是3千米/小时

查看答案和解析>>

同步练习册答案