【题目】如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(8分)
(1)把圆片沿数轴向左滚动1周,点B到达数轴上点C的位置,点C表示的数是 数(填“无理”或“有理”),这个数是 .
(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是 .
(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3
①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?
②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?
【答案】(1)无理;-π;(2)±4π;(3)①第4次;第3次;②26π;-6π .
【解析】
试题分析:(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离,注意两个方向;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.
试题解析:(1)把圆片沿数轴向左滚动1周,点B到达数轴上点C的位置,点C到原点的距离是半圆周长,圆半径为1,所以点C表示的数是无理数,这个数是-π;故答案为:无理,-π;(2)把圆片沿数轴滚动2周,向左或向右,点A到达数轴上点D的位置,点D到原点的距离是两个圆周长,半径还是1,故点D表示的数是4π或-4π;故答案为:4π或-4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3,因为(+2)+(-1)+(+3)+(-4)=0,∴第4次滚动后,A点距离原点最近,因为(+2)+(-1)+(+3)=4,所以第3次滚动后,A点距离原点最远;②∵A点运动的圆周数为:|+2|+|-1|+|+3|+|-4|+|-3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(-1)+(+3)+(-4)+(-3)=-3,(-3)×2π=-6π,∴此时点A所表示的数是:-6π.
科目:初中数学 来源: 题型:
【题目】(满分8分)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷和世界级自然保护区星斗山位于笔直的沪渝高速公路X同侧, 、到直线x的距离分别为和,要在沪渝高速公路旁修建一服务区,向、两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(与直线x垂直,垂足为),到、的距离之和,图(2)是方案二的示意图(点关于直线x的对称点是,连接交直线x于点),到、的距离之和.
(1)求、,并比较它们的大小;
(2)请你说明的值为最小;
(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系, 到直线Y的距离为,请你在X旁和Y旁各修建一服务区、,使、、、组成的四边形的周长最小.并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察一列数a1=3,a2=32,a3=33,a4=34,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_______;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a6=_______,an=_______;(可用幂的形式表示)
(2)如果想要求l+2+22+23+...+210的值,可令S10=l+2+22+23+...+210①,将①式两边同乘以2,得_______②,由②减去①式,得S10=_______.
(3)若(1)中数列共有20项,设S20=3+32+33+34+…+320,请利用上述规律和方法计算S20的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润(万元)与投资成本x(万元)满足如图①所示的二次函数;种植柏树的利润(万元)与投资成本x(万元)满足如图②所示的正比例函数=kx.
(1)分别求出利润(万元)和利润(万元)关于投资成本x(万元)的函数关系式;
(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是边AC上一个动点(不与点A、C重合),过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)探究OE与OF的数量关系并加以证明;
(2)当点O在边AC上运动到什么位置,四边形AECF是矩形,请说明理由;
(3)在第(2)问的基础上,△ABC满足什么条件时,四边形AECF是正方形?(不需说明理由)
(4)当点O在边AC上运动时,四边形BCFE能成为菱形吗?若能,请加以证明;若不能,则说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD的两个顶点所形成的四边形是平行四边形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com