精英家教网 > 初中数学 > 题目详情
(2013•苍梧县二模)如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE,CD相交于点B.
(1)求证:直线AB是⊙O的切线;
(2)如果AC=1,BE=2,求⊙O的半径.
分析:(1)连接OE,证明△ACO≌△AEO,推出∠AEO=∠ACO=90°,根据切线的判定推出即可;
(2)求出AB、BC,证△BEO∽△BCA,得出比例式,代入求出即可.
解答:(1)证明:连接OE,
∵OD=OE,
∴∠ODE=∠OED,
∵DE∥AO,
∴∠COA=∠ODE,∠AOE=∠OED,
∴∠COA=∠AOE,
∵在△ACO和△AEO中
OC=OE
∠COA=∠EOA
OA=OA

∴△ACO≌△AEO(SAS),
∴∠AEO=∠ACO,
∵AC⊥CD,
∴∠ACO=90°,
∴∠AEO=90°,
∵OE为半径,
∴直线AB是⊙O的切线.

(2)解:设⊙O的半径是R,
∵△ACO≌△AEO,
∴AC=AE=1,
∴AB=1+2=3,
在Rt△ACB中,由勾股定理得:BC=
32-12
=2
2

∵∠BEO=90°=∠ACO,∠B=∠B,
∴△BEO∽△BCA,
OE
AC
=
BO
AB

R
1
=
2
2
-R
3

R=
2
2

即⊙O的半径是
2
2
点评:本题考查了切线判定,全等三角形的性质和判定,相似三角形的性质和判定,等腰三角形的性质,平行线性质的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•苍梧县二模)如图,△ABC中,DE∥BC,DE分别交边AB、AC于D、E两点,若AD:AB=1:3,则△ADE与四边形DBCE的面积比为
1:8
1:8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苍梧县二模)计算:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苍梧县二模)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0)

(1)求抛物线的解析式;
(2)如图2,设E是抛物线上在第一象限内的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案