精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边ABC中,AC=10,点OAC上,且AO=3,点PAB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是 ( )

A. 5B. 6C. 7D. 9

【答案】C

【解析】

先计算出OC=7,根据等边三角形的性质得∠A=C=60°,再根据旋转的性质得OD=OP,∠POD=60°,根据三角形内角和和平角定义得∠1+2+A=180°,∠1+3+POD=180°,利用等量代换可得∠2=3,然后根据“AAS”判断△AOP≌△CDO,则AP=CO=7

解:如图,

AC=10AO=3
OC=7
∵△ABC为等边三角形,
∴∠A=C=60°,
∵线段OP绕点D逆时针旋转60゜得到线段OD,要使点D恰好落在BC上,
OD=OP,∠POD=60°,
∵∠1+2+A=180°,∠1+3+POD=180°,
∴∠1+2=120°,∠1+3=120°,
∴∠2=3
在△AOP和△CDO中,

∴△AOP≌△CDO
AP=CO=7
故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.

(1)求y与x的函数关系式,并说明此函数是什么函数;

(2)当x=3时,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点DOB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF.已知点EA点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.

(1)如图1,当t=3时,求DF的长.

(2)如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.

(3)连结AD,当ADDEF分成的两部分的面积之比为1:2时,求相应的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在小正方形的顶点上,这样的三角形叫做格点三角形.

1)填空:∠ABC   

2)请你在图中找出所有满足条件的点D(用黑圆点表示,标上D),使得以DEF为顶点的格点三角形与△ABC全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入。下表是某周的销售情况(超额记为正、不足记为负):

星期

与计划量的差值

+4

-3

-5

+14

-8

+21

-6

1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车______辆。

2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______辆。

3)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端DDCH在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG10米,BGHGCHAH,求塔杆CH的高.(参考数据:tan55°≈1.4tan35°≈0.7sin55°≈0.8sin35°≈0.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为56,则盒子底部长方形的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是2015年12月月历.

(1)如图,用一正方形框在表中任意框往4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是

(2)在表中框住四个数之和最小记为a1,和最大记为a2,则a1+a2=

(3)当(1)中被框住的4个数之和等于76时,x的值为多少?

(4)在(1)中能否框住这样的4个数,它们的和等于92?若能,则求出x的值;若不能,则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点COB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

同步练习册答案