精英家教网 > 初中数学 > 题目详情

【题目】某商店销售一种成本为的水产品,若按销售,一个月可售出,售价毎涨元,月销售量就减少

写出月销售利润(元)与售价(元)之间的函数表达式;

当售价定为多少元时,该商店月销售利润为元?

当售价定为多少元时会获得最大利润?求出最大利润.

【答案】(1)y;(2)当售价定为元或元时,该商店月销售利润为元;

当售价为元,利润最大,最大利润是元.

【解析】

(1)根据月销售利润=每千克的利润×数量就可以表示出月销售利润y(单位:元)与售价x(单位:元/千克)之间的函数解析式;
(2)当y=8000时,代入(1)的解析式求出结论即可,
(3)将(1)的解析式化为顶点式就可以求出结论.

解:(1)由题意,得
y=(x-40)[500-10(x-50)],
y=-10x2+1400x-40000=
答:y与x之间的函数关系式为:y=-10x2+1400x-40000;
(2)由题意,得
8000=-10x2+1400x-40000,
解得:x1=60,x2=80.

答:销售单价应定为80元;
(3)∵y=-10x2+1400x-40000.
∴y=-10(x-70)2+9000.
∴a=-10<0,y有最大值.
∴当x=70时.y最大=9000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同.

(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量实验后,发现摸到白球的频率稳定于0.5左右,求n的值;

(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知mn是实数,定义运算“*”为:m*nmn+n

1)分别求4*(﹣2)与4*的值;

2)若关于x的方程x*a*x)=﹣有两个相等的实数根,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,ACBD相交于点O,能判别这个四边形是正方形的条件是(

A.OA =OB =OC=ODACBDB.ABCDAC=BD

C.ADBC,∠A=CD.OA=OCOB=ODAB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=3,点EF分别在CDAD上,CE=DFBECF相交于点G.

1)求BGC的度数;

2)若CE=1HBF的中点时,求HG的长度;

3)若图中阴影部分的面积与正方形ABCD的面积之比为23,求△BCG的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,PAB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABCCEABEBFACF

1)求证:△AFB∽△AEC

2)求证:△AEFA∽△ABC

3)若∠A=60°时,求△AFE与△ABC面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,M为直线lxa上一点,N是直线l外一点,且直线MNx轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l伴随矩形.如图为直线l伴随矩形的示意图.

1)已知点A在直线lx2上,点B的坐标为(3,﹣2

①若点A的纵坐标为0,则以AB为对角线的直线l伴随矩形的面积是 

②若以AB为对角线的直线l伴随矩形是正方形,求直线AB的表达;

2)点P在直线lxm上,且点P的纵坐标为4,若在以点(21),(﹣21),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l伴随矩形为正方形,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAB中,∠ABO90°,点A位于第一象限,点O为坐标原点,点Bx轴正半轴上,若双曲线yx0)与△OAB的边AOAB分别交于点CD,点CAO的中点,连接ODCD.若SOBD3,则SOCD为(  )

A.3B.4C.D.6

查看答案和解析>>

同步练习册答案