精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,CE是∠DCB的平分线,FAB的中点,AB=6,BC=5,则AEEFFB为(  )

A. 1:2:3 B. 2:1:3 C. 3:2:1 D. 3:1:2

【答案】A

【解析】试题分析:根据题意可知,∠DCE=BEC=BCE,所以BE=BC=5,则AE=ABBE=6﹣5=1,EF=AFAE=3﹣1=2,所以FB=AF=3,所以AEEFFB=1:2:3.

解:∵四边形ABCD是平行四边形,

∴∠DCE=BEC

CE是∠DCB的平分线,

∴∠DCE=BCE

∴∠CEB=BCE

BC=BE=5,

FAB的中点,AB=6,

FB=3,

EF=BEFB=2,

AE=ABEFFB=1,

AEEFFB=1:2:3,

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b与反比例函数的图象交于Am6),B3n)两点.

1)求一次函数的解析式;

2)根据图象直接写出x的取值范围;

3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程:

1

2

3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.

①求y关于x的函数关系式;

②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:

第一步:(计算)尝试满足,使其中都为正整数.你取的正整数__________

第二步:(画长为的线段)以第一步中你所取的正整数为两条直角边长画,使为原点,点落在数轴的正半轴上,,则斜边的长即为

请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)

第三步:(画表示的点)在下面的数轴上画出表示的点,并描述第三步的画图步骤:__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,

(1)试说明△ABC与△MED全等;

(2)若∠M=35°,求∠B的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形中,为边的中点,与对角线交于点,过于点

,求的长;

求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

在平面直角坐标系中已知抛物线+n过点A40),B (1-3.

1)求抛物线的表达式及顶点D的坐标;

2时函数的图象记为G,点PG上一动点,求P点纵坐标的取值范围;

3)在2)的条件下,若经过点C4-4)的直线与图象G有两个公共点,结合图象直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P的坐标为(04),直线yx3x轴、y轴分别交于点AB,点M是直线AB上的一个动点,则PM的最小值为________

查看答案和解析>>

同步练习册答案