精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点P的坐标为(04),直线yx3x轴、y轴分别交于点AB,点M是直线AB上的一个动点,则PM的最小值为________

【答案】

【解析】试题分析:认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PBOBOAAB的长度,利用△PBM∽△ABO,即可求出本题的答案.

解:如图,过点PPM⊥AB,则:∠PMB=90°

PM⊥AB时,PM最短,

因为直线y=x﹣3x轴、y轴分别交于点AB

可得点A的坐标为(40),点B的坐标为(0﹣3),

Rt△AOB中,AO=4BO=3AB==5

∵∠BMP=∠AOB=90°∠B=∠BPB=OP+OB=7

∴△PBM∽△ABO

=

即:

所以可得:PM=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,CE是∠DCB的平分线,FAB的中点,AB=6,BC=5,则AEEFFB为(  )

A. 1:2:3 B. 2:1:3 C. 3:2:1 D. 3:1:2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠ACB90°ACBCADCEBECE,垂足分别是点DE

(1)求证:BEC≌△CDA

(2)当AD3BE1时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y()与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:

(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?

(2)已知洗衣机的排水速度为每分钟19升.

①求排水时洗衣机中的水量y()与时间x(分钟)与之间的关系式;

②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB6厘米,AD8厘米.延长BC到点E,使CE3厘米,连接DE.动点PB点出发,以2厘米/秒的速度向终点C匀速运动,连接DP.设运动时间为t秒,解答下列问题:

(1)t为何值时,△PCD为等腰直角三角形?

(2)设△PCD的面积为S(平方厘米),试确定St的关系式;

(3)t为何值时,△PCD的面积为长方形ABCD面积的

(4)若动点P从点B出发,以2厘米/秒的速度沿BCCDDA向终点A运动,是否存在某一时刻t,使△ABP和△DCE全等?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在爱满扬州慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.

1)这50名同学捐款的众数为 元,中位数为 元;

2)求这50名同学捐款的平均数;

3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,

1)问应将每件售价定为多少元时,才能使每天利润为640元且成本最少?

2)问应将每件售价定为多少元时,才能使每天利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空并完成以下证明:

已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.

求证:AB∥CD,∠E=∠F.

证明:∵∠BAP+∠APD=180°,(已知)

∴AB∥   .(   

∴∠BAP=   .(   

∵∠1=∠2,(已知)

∠3=   ﹣∠1,

∠4=   ﹣∠2,

∴∠3=   (等式的性质)

∴AE∥PF.(   

∴∠E=∠F.(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为点B(0,3),其顶点为C,对称轴为x=1,

(1)求抛物线的解析式;

(2)已知点M为y轴上的一个动点,当ABM为等腰三角形时,求点M的坐标;

(3)将AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.

查看答案和解析>>

同步练习册答案