【题目】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?
(2)已知洗衣机的排水速度为每分钟19升.
①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;
②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.
【答案】(1)洗衣机的进水时间是4分钟;清洗时洗衣机中水量为40升.(2)排水时间为2分钟,排水结束时洗衣机中剩下的水量为2升.
【解析】
解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;
(2)①∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,
∴y=40-19(x-15)=-19x+325,
②∵排水时间为2分钟,
∴y=-19×(15+2)+325=2升.
∴排水结束时洗衣机中剩下的水量2升.
(1)根据函数图象可以确定洗衣机的进水时间,清洗时洗衣机中的水量;
(2)①由于洗衣机的排水速度为每分钟19升,并且从第15分钟开始排水,排水量为40升,由此即可确定排水时y与x之间的关系式;
②根据①中的结论代入已知数值即可求解.
科目:初中数学 来源: 题型:
【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
在平面直角坐标系中,已知抛物线+n过点A(4,0),B (1,-3).
(1)求抛物线的表达式及顶点D的坐标;
(2)将时函数的图象记为G,点P为G上一动点,求P点纵坐标的取值范围;
(3)在(2)的条件下,若经过点C(4,-4)的直线与图象G有两个公共点,结合图象直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y1=的图象与函数y2=kx+b的图象交于点A(﹣1,a)B(﹣8+a,1)
(1)求函数y=和y=kx+b的表达式;
(2)观察图象,直接写出不等式<kx+b的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理(解析)
提出问题:如图1,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
当AP=AD时(如图2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA,
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系式并证明;
(2)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为: ;
(3)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系为: ;
(4)当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=4cm,BC=3cm,点P由B出发沿BA的方向向点A匀速运动,速度为1cm/s,同时点Q由A出发沿AC的方向向点C匀速运动,速度为2cm/s,连接PQ,设运动的时间为t(s),其中0<t<2,解答下列问题:
(1)当t为何值时,以P、Q、A为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,线段PQ将△ABC的面积分成1:2两部分?若存在,求出此时的t,若不存在,请说明理由;
(3)点P、Q在运动的过程中,△CPQ能否成为等腰三角形?若能,请求出此时t的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5 cm,AP=8 cm,求△APB的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com