精英家教网 > 初中数学 > 题目详情
如图在△ABC中,AD是BC边上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,则∠C=(  )
分析:由AD是BC边上的高得∠ADB=90°,根据三角形的内角和定理得到∠DBE=90°-∠BED=90°-60°=30°,根据角平分线的定义由BE平分∠ABD得∠ABD=2∠DBE=2×30°=60°,然后再根据角形的内角和定理有∠BAC+∠ABC+∠C=180°,把∠BAC=50°,∠ABD=60°代入计算即可得到∠C的度数.
解答:解:∵AD是BC边上的高,
∴∠ADB=90°,
∵∠BED=60°,
∴∠DBE=90°-60°=30°,
又∵BE平分∠ABD,
∴∠ABD=2∠DBE=2×30°=60°,
而∠BAC+∠ABC+∠C=180°,∠BAC=50°,
∴∠C=180°-60°-50°=70°.
故选A.
点评:本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了角平分线的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图在△ABC中,∠ACB=90°,CD是边AB上的高.那么图中与∠A相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,∠ABC=50°,∠ACB=75°,点O是内心,则∠BOC的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的两点,则图中阴影部分的面积是
20
20

查看答案和解析>>

同步练习册答案