精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O直径,CD为⊙O上不同于AB的两点,∠ABD2BAC.过点CCEDB,垂足为E,直线ABCE相交于F点.

1)求证:CF为⊙O的切线;

2)若CE2BE1,求BD长.

【答案】1)见解析;(2BD3

【解析】

1)连结OC,由于∠A=OCA,则根据三角形外角性质得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根据平行线的判定得到OCBD,再CEBD得到OCCE,然后根据切线的判定定理得CF为⊙O的切线;
2)过点OOGDE,垂足为G,则可证四边形OCEG是矩形,可得OG=CE=2OC=GE=1+GB,根据勾股定理可求GB的长,根据垂径定理可求BD的长.

解:(1)如图:连结OC

OAOC

∴∠A=∠OCA

∴∠BOC=∠A+OCA2A

∵∠ABD2BAC

∴∠ABD=∠BOC

OCBD

CEBD

OCCE

CF为⊙O的切线;

2)如图:过点OOGDE,垂足为G

OGDEOCCEDECE

∴四边形OCEG是矩形

OGCE2OCGE1+GB

RtOGB中,OB2OG2+GB2

∴(1+GB24+GB2

GB

OGDB

BD2GB3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将RtABC平移到A'B'C'的位置,其中∠C90°使得点C'ABC的内心重合,已知AC4BC3,则阴影部分的面积为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,D是⊙O上一点,DEAB于点E,且∠ADE60°C上一点,连结ACCD

1)求∠ACD的度数;

2)证明:AD2ABAE

3)如果AB8,∠ADC45°,请你编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为(  )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

问题情境:

(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是   ,位置关系是   

合作探究:

(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.

(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为EF分别是ABBC的中点,AFDEDB分别交于点MN,则△DMN的面积=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的三个顶点分别是A-4, 1),B-1,3),C-1,1

1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△;平移△ABC,若A对应的点坐标为(-4-5),画出△;

2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;

3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的部分对应值如下表所示:

-1

0

1

2

3

4

6

1

-2

-3

-2

m

下面有四个论断:

①抛物线的顶点为

③关于的方程的解为

其中,正确的有___________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图以正五边形ABCDE的顶点A为圆心,AE为半径作圆弧交BA的延长线于点A′,再以点B为圆心,BA′为半径作圆弧交CB的延长线于B′,依次进行.得到螺旋线,再顺次连结EA′,AB′,BC′,CD′,DE′,得到5块阴影区域,若记它们的面积分别为S1S2S3S4S5,且满足S5S21,则S4S3的值为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案