分析 根据已知条件建立坐标系,得出此抛物线的顶点坐标以及图象与x轴的交点坐标,求出二次函数解析式,再根据M点的横坐标,求出纵坐标,即可解决问题.
解答
解:如图,建立平面直角坐标系.
∵AB=20cm,抛物线的顶点到AB边的距离为25cm,
∴此抛物线的顶点坐标为:(10,25),图象与x轴的交点坐标为:(0,0),(20,0),
∴抛物线的解析式为:y=a(x-10)2+25,
解得:0=100a+25,
a=-$\frac{1}{4}$,
∴y=-$\frac{1}{4}$(x-10)2+25,
现要沿AB边向上依次截取宽度均为4cm的矩形铁皮,
∴截得的铁皮中有一块是正方形时,正方形边长一定是4cm.
∴当四边形DEFM是正方形时,DE=EF=MF=DM=4cm,
∴M点的横坐标为AN-MK=10-2=8,
即x=8,代入y=-$\frac{1}{4}$(x-10)2+25,
解得:y=24,
∴KN=24,24÷4=6,
∴这块正方形铁皮是第六块,
故答案为:6.
点评 此题主要考查了二次函数的应用,根据已知条件建立坐标系,求出二次函数解析式是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com