精英家教网 > 初中数学 > 题目详情

【题目】《九章算术》是我国古代内容极为丰富的数学名著。书中有下列问题“今有勾八步,股十五步。问勾中容圆径几何?”其意思为今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是步。

【答案】6
【解析】解:如图所示:设⊙O内切于△ABC,半径为r,
在Rt△ABC中,AB=8,BC=15,由勾股定理得:
AC==17,
根据SABC=×AB×BC=×OD×AB+×BC×OE+×AC×OF,
可得:8×15=(8+15+17)×r,
解得:r=3,
所以直径d=2r=6
【考点精析】通过灵活运用勾股定理的概念,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.

(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.

(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;

(2)如图1,猜想AG与BE的位置关系,并加以证明;

(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个多面体的表面展开图,每个面上都标注了字母(字母在多面体的外表面),请根据要求回答问题.

(1)如果D面在多面体的左面,那么F面在哪里?

(2)B面和哪一面是相对的面?

(3)如果C面在前面,从上面看到的是D,那么从左面能看到哪一面?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求证:此方程总有两个实数根;

(2)若此方程有一个根大于0且小于1,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线BD上有一点C,则:

(1)1和∠ABC是直线AB,CE被直线_____所截得的____角;

(2)2和∠BAC是直线CE,AB被直线____所截得的_____角;

(3)3和∠ABC是直线__________被直线_____所截得的____角;

(4)ABC和∠ACD是直线_________被直线_____所截得的角;

(5)ABC和∠BCE是直线___________被直线所截得的_____角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的ABP的面积S关于时间t的函数图象如图乙.若AB=6,试回答下列问题:

(1)图甲中的BC长是多少?

(2)图乙中的a是多少?

(3)图甲中的图形面积的多少?

(4)图的b是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l和双曲线 (k>0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1 , △BOD面积是S2 , △POE面积是S3 , 则(
A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3

查看答案和解析>>

同步练习册答案