【题目】已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求证:此方程总有两个实数根;
(2)若此方程有一个根大于0且小于1,求k的取值范围.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,求 的长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.
(1)试判断四边形AEBO的形状,并说明你的理由;
(2)求证:EO=DC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
如图①,在平面直角坐标系中,若已知点A(xA,yA)和点C(xC,yC),点M为线段AC的中点,利用三角形全等的知识,有△AMP≌△CMQ,则有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,从而有,即中点M的坐标为(,).
基本知识:
(1)如图①,若A、C点的坐标分别A(﹣1,3)、C(3,﹣1),求AC中点M的坐标;
方法提炼:
(2)如图②,在平面直角坐标系中,ABCD的顶点A、B、C的坐标分别为(﹣1,5)、(﹣2,2)、(3,3),求点D的坐标;
(3)如图③,点A是反比例函数y=(x>0)上的动点,过点A作AB∥x轴,AC∥y轴,分别交函数y═(x>0)的图象于点B、C,点D是直线y=2x上的动点,请探索在点A运动过程中,以A、B、C、D为顶点的四边形能否为平行四边形,若能,求出此时点A的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著。书中有下列问题“今有勾八步,股十五步。问勾中容圆径几何?”其意思为今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是步。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.
(1)如图1,①∠BEC=_________°;
②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;
(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:
①△BO′A可以由△BOC绕点B逆时针旋转60°得到;
②点O与O′的距离为4;
③四边形AO BO′的面积为6+3
④∠AOB=150°;
⑤S△AOC+S△AOB=6+ .
其中正确的结论是( )
A.②③④⑤
B.①③④⑤
C.①②③⑤
D.①②④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.
(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=2,NP= ,求NQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com