精英家教网 > 初中数学 > 题目详情

【题目】2019年春节,小娜家购买了4个灯笼,灯笼上分别写有“欢”、“度”、“春”、“节”(外观完全一样).

1)小娜抽到“2019年”是  事件,“欢”字被抽中的是  事件;(填“不可能”或“必然”或“随机”).小娜从四个灯笼中任取一个,取到“春”的概率是  

2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”、“节”两个灯笼的概率.

【答案】1)不可能,随机,;(2

【解析】

1)由不可能事件与随机事件的概念及概率公式求解可得;
2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.

解:(1)小娜抽到“2019是不可能事件,字被抽中的是随机事件.小娜从四个灯笼中任取一个,取到的概率是

故答案为:不可能,随机,

2)画树状图如下:

12种等可能情况,其中被抽中的有2种.

被抽中的概率是:P==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x轴交于AB(点A在点B的左侧)与y轴交于点C,连接ACBC.过点AADBC交抛物线于点D810),点P为线段BC下方抛物线上的任意一点,过点PPEy轴交线段AD于点E

1)如图1.当PE+AE最大时,分别取线段AEAC上动点GH,使GH=5,若点MGH的中点,点N为线段CB上一动点,连接ENMN,求EN+MN的最小值;

2)如图2,点F在线段AD上,且AFDF=73,连接CF,点QR分别是PE与线段CFBC的交点,以RQ为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CKAD于点K,将ACK绕点C顺时针旋转75°得到A′CK′,当矩形RQTSA′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形顶点是网格线的交点

先将竖直向上平移3个单位,再水平向右平移5个单位得到,请画出

点顺时针旋转,得,请画出

线段变换到的过程中扫过区域的面积为______

经过AC两点的函数解析式为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据割圆术,由圆内接正六边形算得的圆周率的近似值是( )

A. 0.5B. 1C. 3D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出yx的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案